Journal of

the Operations Research
Society of China

VOLUME 1 « ISSUE 1 « MARCH 2013

@ Springer



JORC (2013) 1:1-2
DOI 10.1007/s40305-013-0011-1

PRERACE . 0n b e e el

Journal of the Operations Research Society of China

Ya-xiang Yuan

Published online: 22 March 2013
© Operations Research Society of China, Periodicals Agency of Shanghai University; and
Springer-Verlag Berlin Heidelberg 2013

I am very pleased to present the first issue of Journal of the Operations Research
Society of China. 1 believe that the launch of this new journal is not only a festival
for the Operations Research Society of China, but also an important event in the
international operational research community.

Economical globalization has dramatically changed the economical systems.
Problems and difficulties crop up in optimization and decision making when we try
to do dynamic reformations in energy, transportation, telecommunication, financial
engineering, urban planning, health care, environmental pollution, natural resource
consumption and transnational logistics. In solution of the complicated problems, tra-
ditional theories and methodologies of operations research and management science
prove to be less useful. We have to find way out. We need to better understand the
backgrounds and nature of the intrinsic system. We endeavor to develop new theories,
methodologies and modeling approaches.

I hope, this new journal, launched by the Operations Research Society of China,
will timely introduce problems in practical optimization and decision making, and
report the advances in their solutions. I wishth@ desinal of the Operations Research
Society of Chinabe a global forumi<or th¥ elitite community 6f operations research
and managegf§ént science.

Y.-x. Yuan (X))

State Key Laboratory of Scientific/Engineering Computing;#nstittite '0f' Compfational Mathematics
and Scientific/Engineering Computing, AMSS, Chinese Acadeniyof Sciences, Zhong Guan Cun
Donglu 55, Beijing 100190, PR. China

e-mail: yyx@lsec.cc.ac.cn

@ Springer



2. _ Y.-x. Yuan

I am happy and proud that we have a qualified international editorial board, that is
sure to accomplish the mission of this journal. Of course, our goal cannot be achieved
without the support from all optimizers and practitioners. The success of this journal
depends on your care, support and contributions.

Editor-in-Chief

@ Springer



JORC (2013) 1:3-36
DOI 10.1007/s40305-013-0003-1

REGULAR PAPER

Approximation Algorithms for Discrete Polynomial
Optimization

Simai He - Zhening Li - Shuzhong Zhang

Received: 19 December 2012 / Accepted: 22 December 2012 / Published online: 20 February 2013
© Operations Research Society of China, Periodicals Agency of Shanghai University, and
Springer-Verlag Berlin Heidelberg 2013

Abstract In this paper, we consider approximation algorithms for optimizing a
generic multivariate polynomial function in discrete (typically binary) variables. Such
models have natural applications in graph theory, neural networks, error-correcting
codes, among many others. In particular, we focus on three types of optimization
models: (1) maximizing a homogeneous polynomial function in binary variables;
(2) maximizing a homogeneous polynomial function in binary variables, mixed with
variables under spherical constraints; (3) maximizing an inhomogeneous polynomial
function in binary variables. We propose polynomial-time randomized approximation
algorithms for such polynomial optimization models, and establish the approximation
ratios (or relative approximation ratios whenever appropriate) for the proposed algo-
rithms. Some examples of applications for these models and algorithms are discussed
as well.
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1 Introduction

This paper is concerned with optimizing a (high degree) multivariate polynomial
function in (mixed) binary variables. Our basic model is to maximize a d-th de-
gree polynomial function p(x) where x = (x, x2,- -~ ,)c,l)T is chosen such that x; €
{1, =1} fori=1,2,---,n. Forease of referencing, let us call this basic model to be
(P) : maxye(1,—1jn p(x). This type of problem can be found in a great variety of ap-
plication domains. For example, the following hypergraph max-covering problem is
well studied in the literature, which is precisely (P). Given a hypergraph H = (V, E)
with V being the set of vertices and E the set of hyperedges (or subsets of V), and
each hyperedge e € E is associated with a real-valued weight w(e). The problem is
to find a subset S of the vertices set V, such that the total weight of the hyperedges
covered by § is maximized. Denoting x; € {0, 1} (i = 1,2, --- , n) to indicate whether
or not vertex i is selected in S. The problem thus is maxye(o, 1) ZeeE w(e) [—[iee Xis
By a simple variable transformation x; — (x; + 1)/2, the problem is transformed to
(P), and vice versa.

Note that (P) is a fundamental problem in integer programming. As such it has
received attention in the literature; see [17, 18]. It is also known as Fourier support
graph problem. Mathematically, a polynomial function p : {—1, 1} — R has Fourier
expansion p(x) = ZSg[l,Z.w,n} p(S) [1;es xi, which is also called Fourier support
graph. Assume that p has only succinct (polynomially many) non-zero Fourier co-
efficient p(S). The question is: Can we compute the maximum value of p over the
discrete cube {1, —1}", or alternatively can we find a good approximate solution in
polynomial-time? The latter question actually motivates this paper. Indeed, (P) has
been investigated extensively in the quadratic case, due to its connections to various
graph partitioning problems, e.g., the maximum cut problem [16]. In general, (P) is
closely related to finding the maximum weighted independent set in a graph. In par-
ticular, let G = (V, E) be a graph with V the set of vertices V and E the set of edges,
and each vertex is assigned a positive weight. We call S to be an independent set of
vertices if and only if § C V and no two vertices in S share an edge. The problem is
to find an independent set of vertices such that the sum of its weights is maximum
over all possible independent sets.

In fact, any unconstrained binary polynomial maximization problem can be trans-
formed into the maximum weighted independent set problem, which is also com-
monly used technique in the literature for solving (P) (see e.g., [S, 30]). The trans-
formation uses the concept of a conflict graph of a 0—1 polynomial function. The idea
is illustrated in the following example. Let us consider

f(x) =—=2x] —2xp +5x1x0 —4xyxox3,  (x1,x2,x3) € {0, 1}°.

Note that f(x) can be transformed to an equivalent polynomial so that all terms
(except the constant term) have positive coefficients. The new polynomial involves
both the variables and their complements, i.e., X; ;== 1 — x; for i = 1,2,3. In our
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Approximation Algorithms for Discrete Polynomial Optimization 5

Fig. 1 Conflict graph

associated with 211 a e T1Z2
—2x1 — 2x0 + Sx1xp —4x1x9x3 v
282 e‘ P

example, such polynomial can be
f(x)=—4+2x1 +2x3 + x1x2 +4x1x2X3.

The conflict graph G (f) associated with a polynomial f(x) has vertices correspond-
ing to the terms of f(x), and each vertex is associated with a term in the polynomial
except for the constant term. Two vertices in G(f) are connected by an edge if and
only if one of the corresponding terms contains a variable and the other correspond-
ing term contains its complement variable. The weight of a vertex in G(f) is the
coefficient of the corresponding term in f. The conflict graph of f(x) is shown in
Fig. 1. Maximizing the weighted independent set of the conflict graph also solves the
binary polynomial optimization problem. Beyond its connection to the graph prob-
lems, (P) also has applications in neural networks [4, 8, 21], error-correcting codes
[8, 29], etc. For instance, recently Khot and Naor [24] show that it has applications
in the problem of refutation of random k-CNF formulas [12, 13].

One important subclass of polynomial function is homogeneous polynomials.
Likewise, the homogeneous quadratic case of (P) has been studied extensively; see
e.g. [2, 16, 27, 28]. Homogeneous cubic polynomial is also studies by Khot and
Naor [24]. Another interesting problem of this class is the oo — 1-norm of a matrix
M = (a;j)n, xn, (seee.g., [2]),ie.,

T .
IMloos1 = max xTMy:= ) aijxiy;.
xefl, =1}, ye{l,—1}"2 ) .
1<ign, 1<j<n

It is quite natural to extend the problem of co +— I-norm to higher order tensors. In
particular, the || F |loor>1 Of a d-th order tensor F = (a;,;,..i,) can be defined as

2 : 1.2 d
max a,-l,-z...,-dxl-]xi2~--x,-d.
xkel{l,—1)%, k=1,2,- ,d . .

’ ’ oI sng 1K Kng, - 1KigKng

The other generalization of the matrix co — 1-norm is to extend the entry a;; of
the matrix M to symmetric matrix A;j, i.e., the problem of

L1y 1"2Amax( 2 xiyinj)’
well=lsfl=l) I<ign1<j<m

where Amax(-) indicates the largest eigenvalue of a matrix. If the matrix A;; is not
restricted to be symmetric, we may instead maximize the largest singular value,

ie.,
{1 I],{rllax 1 1"20'"“( Z xiyjA[j)'
e S I<i<n 1</ <m
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6 S. Heetal.

These two problems are actually equivalent to

max F(x,y,z,z) and
xell,—1)"1,ye(l,~ 112 |z]l2=1

X F(x,y,z,w)
xe(l,—11"1 ye{l,—1)"2 ||z |2=[wl2=1

respectively, where F is a multilinear function induced by the tensor F, whose
(i, j, k, €)-thentry is (k, £)-th entry of the matrix A;;.

In fact, a very interesting and succinct matrix combinatorial problem is: Given
n matrices A; (i = 1,2,---,n), find a binary combination of the matrices so as to
maximize the spectral norm of the combined matrix:

n
max  Omax Zx,-A,- ;
xe{l,—1}"

i=1
This is indeed equivalent to

max F(x,y,2).
xe{l, =1} lyll2=lzll2=1

All the problems studied in this paper are NP-hard in general, and our focus
will be polynomial-time approximation algorithms. In the case that the objective
polynomial is quadratic, a well known example is the semidefinite programming
relaxation and randomization approach for the max-cut problem due to Goemans
and Williamson [16], where essentially a 0.878-approximation ratio of the model
MaXye(], 1) xTMx is shown with M being the Laplacian of a given graph. In the
case M is only known to be positive semidefinite, Nesterov [27] derived a 0.636-
approximation bound. Charikar and Wirth [9] considered a more general model; they
proposed an Q(@)-approximate algorithm for diagonal-free M. For the matrix
00 > 1-norm problem

max x'M ¥,
xe{l,—1)" ye{l,—1)"2

Alon and Naor [2] derived a 0.56-approximation bound. Remark that all these
approximation bounds remain hitherto the best available ones. When the de-
gree of the polynomial function is greater than 2, to the best of our knowl-
edge, the only known approximation result in the literature is due to Khot and
Naor [24], where they showed how to estimate the optimal value of the problem
maXye(l,—1} Zlgi,j,kgn ajjrxixjxg with (ajjk)nxnxn being square-free (a;jx = 0
whenever two of the indices are equal). Specifically, they presented a polynomial-
time procedure to get an estimated value that is no less than .Q(\/I}—IE ) times the
optimal value. No solution, however, can be derived from the process. Moreover, the
process is highly complex and is mainly of theoretical interest.

In this paper we consider the optimization models for a general polynomial func-
tion of any fixed degree d in (mixed) binary variables, and present polynomial-time
randomized approximation algorithms. The algorithms proposed are fairly simple to
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Approximation Algorithms for Discrete Polynomial Optimization 7

implement. This study is motivated by our previous investigations on polynomial op-
timization under quadratic constraints [19, 20], as well as recent developments on
homogeneous polynomial optimization under spherical constraints, e.g., So [31] and
Chen et al. [10]. However, the discrete models studied in this paper have novel fea-
tures, and the analysis is therefore entirely different from previous works. This paper
is organized as follows. First, we introduce the notations and models in Sect. 2. In
Sect. 3, we present the new approximation results, and also sketch the main ideas,
while leaving the technical details to the Appendix. In Sect. 4 we shall discuss a few
more specific problems where the models introduced can be directly applied.

2 Notations and Model Descriptions

In this paper we shall use the boldface letters to denote vectors, matrices, and tensors
in general (e.g., the decision variable x, the data matrix @, and the tensor form F),
while the usual lowercase letters are reserved for scalars (e.g., x; being the first com-
ponent of the vector x).

2.1 Objective Functions

The objective functions of the optimization models studied in this paper are all multi-
variate polynomial functions. The following multilinear tensor function plays a major
role in our discussion:

. 1.2 dy _ 12 d
Function T F(x', x%, -, x%) = > iyigeigXiy Xiy = Xiys
1< <nyL 1< Kng, - 1K Sng

where xK € R" fork=1,2, ---, d: and the letter ‘T’ signifies the notion of rensor.
In the shorthand notation we shall denote F = (aj,i,...i;) € R™"*"2X"">*"d to be a d-th
order tensor, and F to be its corresponding multilinear form. Closely related with the
tensor F' is a general d-th degree homogeneous polynomial function f(x), where
x € R". We call the tensor F = (aj,i,...i;) super-symmetric (see [25]) if aj,i,...i; 18
invariant under all permutations of {i{, iz, -+ ,ig}. As any homogeneous quadratic
function uniquely determines a symmetric matrix, a given d-th degree homogeneous
polynomial function f(x) also uniquely determines a super-symmetric tensor. In par-
ticular, if we denote a d-th degree homogeneous polynomial function:

Function H f(x) = E QjjigweigXiy Xiy =+ Xigs
IS i< <Sigsn

then its corresponding super-symmetric tensor form can be written as F =
(bilfz'“fd) S Rnd, with biliszd = a,-l,-z.“,-d/ll'[(il, l-2, paE g id)[, where |17(i1, iz,
-, iq)| is the number of distinctive permutations of the indices {i1, i2,- - , iz}. This
super-symmetric tensor representation is indeed unique. Let F be its correspond-
ing multilinear function defined by the super-symmetric tensor F, then we have
f(x)=F(x,x,---,x). The letter ‘H’ here is used to emphasize that the polynomial
N,

d
function in question is homogeneous.
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8 S. Heet al.

We shall also consider in this paper the following:

Function M F(xl,x1,~-~,x1,x2,x2,~~ xZ xS xS, ,xs)

dl dz d.\'
= flx! 22, .., x%),

where x* € R™ for k =1,2,---,s,d| +dy + --- +d; = d, and d-th order ten-
dg

ANy p®2 A : .
sor form F € R™ XM XX . the letter ‘M’ signifies the notion of mixed polyno-
mial forms. We may without loss of generality assume that F has partial symmet-

ric property, namely for any fixed (x2, x3, -+, x%), F(-,-, -, o X, T e K
N N —
dy d>
x*,x%, .-, x*) is a super-symmetric d;-th order tensor, and so on.
—
d

Beybnd the homogeneous polynomial functions described above, a generic mul-
tivariate inhomogeneous polynomial function of degree d, p(x), can be explicitly
written as a summation of homogeneous polynomial functions in decreasing degrees,
namely

d d
Function P p(x) := Z Fr(x,x,---,x)+ fo= Z Ji(x) + fo.
—
k=1 k k=1
where x € R", fo € R, and fy(x) = Fx(x,x,---,x) is a homogeneous polynomial
—_——
k
function of degree k fork = 1,2, -, d; the letter ‘P’ signifies the notion of polyno-

mial.

Throughout we shall adhere to the notation F for a multilinear form defined
by a tensor form F, and f for a homogeneous polynomial function, and p for
an inhomogeneous polynomial function. Without loss of generality we assume that
ny <ny <--- < ngin the tensor form F € R">7"12XXMd and ny <np < -+ - < g in

the tensor form F € IR”TI xng? XX We also assume at lease one component of the
tensor form, F in Functions T, H, M, and F, in Function P is nonzero to avoid triv-
iality. Finally, without loss of generality we assume the inhomogeneous polynomial
function p(x) has no constant term, i.e., fyp =0 in Function P.

2.2 Decision Variables

This paper is focused on integer and mixed integer programming with polynomial
functions. In particular, two types of decision variables are considered in this paper:
discrete binary variables

xeB" :={zeR"|z*=1,i=1,2,---,n},
and continuous variables on the unit sphere:

yeS":={zeR" ||zl = (21% + 2>+ +2.%) P =1}.

@ Springer



Approximation Algorithms for Discrete Polynomial Optimization 9

Note that in this paper we shall by default use the Euclidean norm for vectors,
matrices and tensors. The decision variables in our models range from the pure binary
vector x, to a mixed one including both x (¢ B") and y (¢ S™) .

2.3 Model Descriptions

In this paper we consider the following binary integer optimization models with ob-
jection functions as specified in Sect. 2.1:

(T) max F(x!,x2,..-,x%)
s.t. xkEBnk7 k:11237d;
(H) max fx)=F(,x,--,x)
—_—

d
st. xeB”
(M) max f(xl,x2,---,xs):F(xl,xl,---,xl,xz,xz,'--,xz,'-',
d dy
xs’xs,.-.’xs)
N
ds
st. xkeB™, k=1,2,.--,s:

d
(P) max p(x)=) Fi(x,x,--+, %)+ fo
k=1

k
s.t.  xeB”;

and their mixed models:

(T)/ max F(xlvxz""sxd’ylvyzi.”’yd,)
st. xKeB™, k=1,2,---,d,
yeesme, £=1,2,---.d;
(H)Y max f(x,y)=F@x,x,-, %X, 9,5,

d d'
st. xeB”,
yeS™
(M) max f(xlx? - x5yl y2 ey
:F(x],xl’...’x],...,xs’xs,...’xs,yl,yl’...’yl’...’
d; ds d;
! t t
y,y,"',_)’)
—
d
st. xkeB™, k=1,2,---,s,

ylesSm, ¢=1,2,---,t.

@ Springer



10 S.Heetal.

Letd) +dy+---+dy=d and d| +d; + - +d; = d" in the above mentioned
models. The degrees of the polynomial functions in these models, d for the pure
binary models and d + d’ for the mixed models, are understood as fixed constants in
our subsequent discussions. As before, we also assume that the tensor forms of the
objective functions in (H)" and (M)’ to have partial symmetric property, m; < ma <
o Kmgin (T) ,and my <mp < -+ <my in (M),

2.4 Approximation Ratios

All the optimization problems mentioned in the previous subsection are in general
NP-hard when the degree of the objective polynomial function is larger than or equal
to 2. This is because each one includes computing the matrix co + l-norm as a
subclass, i.e.,

T
| Qlloors1 = max (xl) Qx2
s.t. x!eBm,
x2eBm,

Thus, in this paper we shall focus on polynomial-time approximation algorithms with
provable worst-case performance ratios. For any maximization problem (P) defined
as maxyes f(x), we use vmax (P) to denote its optimal value, and vyin (P) to denote
the optimal value of its minimization counterpart, i.e.,

Umax (P) = maé(f(x) and  vpin(P) := miglf(x).

Definition 2.1 We call the maximization model (P) to admit a polynomial-time ap-
proximation algorithm with approximation ratio t € (0, 1], if vnax(P) = 0 and a fea-
sible solution z € S can be found in polynomial-time such that f(z) 2> T Vmax (P).

Definition 2.2 We call the maximization model (P) to admit a polynomial-time
approximation algorithm with relative approximation ratio v € (0, 1], if a feasi-
ble solution z € S can be found in polynomial-time such that f(z) — vmin(P) 2
T (Vmax (P) — vmin(P)).

Regarding to the relative approximation ratios (Definition 2.2), in some cases it
is convenient to use the equivalent form: vpax(P) — f(2) < (I — T)(Wmax(P) —
Umin(P)).

3 Bounds on the Approximation Ratios

In this section we shall present our main results, viz. the approximation ratios for
the discrete polynomial optimization models considered in this paper. In order not
to distract reading the main results, the proofs will be postponed and placed in the
Appendix. To simplify, we use the notion £2(f (n)) to signify that there are positive
universal constants « and ng such that 2(f(n)) > af (n) for all n > ng. Throughout
our discussion, we shall fix the degree of the objective polynomial function (denoted
by d or d + d’ in the paper) to be a constant.

@ Springer



Approximation Algorithms for Discrete Polynomial Optimization 11

3.1 Homogeneous Polynomials in Binary Variables

Theorem 3.1 (T'): max,«gn F (x!,x2,... , x%) admits a polynomial-time approx-

imation algorithm with approximation ratio tr, where
1 - _1
r7 = (miny -+ ng2) 22/ In(1 4+ v/2) = 2((ming -+ ng2)72).

We remark that when d = 2, (T) is to compute ||F|co—1. The current best

polynomial-time approximation ratio for that problem is M ~ 0.56 due to
Alon and Naor [2]. Huang and Zhang [22] considered similar problems for the com-
plex variables and derived constant approximation ratios.

When d =3, (T) is a slight generalization of the model considered by Khot and
Naor [24], where F was assumed to be super-symmetric (implying n1 = ny = n3) and
square-free (i.e., a;jx = 0 whenever two of the three indices are equal). In our case, we
discard the assumptions on the symmetry and the square-free property altogether. The

approximation bound of the optimal value given in [24] is £2(,/ h:%); however, no

polynomial-time procedure is provided to find a corresponding approximate solution.

Our approximation algorithm works for general degree d based on recursion, and
is fairly simple. We may take any approximation algorithm for the d = 2 case, say
the algorithm by Alon and Naor [2], as a basis. When d = 3, noticing that any n{ x
ny x n3 third order tensor can be written as an (nn,) x n3 matrix by combining its
first and second modes, (T) can be relaxed to

3y . 3
max F(X,x°):= Z aijk XijXi
1<ing, 1K) <np, 1<k<n;
3
st. XeB"2, x’eB".

This problem is the exact form of (7)) when d = 2, which can be solved approx-
imately with approximation ratio M Denote its approximate solution to be

(X, %%). The next key step is to recover (£', £2) from X. For this purpose, we in-
troduce the following decomposition routine, which plays a fundamental role in our
algorithms.

If we let M = F(-,-, &%) and apply DR 3.1, then we can prove the output @', #?)
satisfies

2
T./n

2 o .3y 4In(1++/2)
=—— F(X,®)> ———
V2! Toy/n1

which yields an approximation ratio for d = 3. By a recursive procedure, the approx-
imation algorithm is readily extended to solve (") with any fixed degree d.

MeX

E[F(2'. 22 #%)] =g[(&") M2?] >

Umax (1),

Theorem3.2 If F(x,x,---,Xx) is square-free and d is odd, then (H): maxycg: f(x)
[ ——

d
admits a polynomial-time approximation algorithm with approximation ratio Ty,

@ Springer



12 S.Heetal.

DR 3.1 (Decomposition Routine)

o Input: matrices M € R"1 "2 and X e B"1*"2,
e Construct

Lixn, X/Jmi

X=|. AT .
£ m X & n

e Randomly generate

(§> NN(OVI|+1127 X)
n
and compute

' =sign(®),  #* =sign();

repeat if necessary, until (J?l)TMfc2 > njﬁTM o X.

e Output: binary vectors (', %).

where

ty 1= dld~n™ T /7 In(1 + V2) = 2(nT).

Theorem 3.3 If F(x,x, - ,x) issquare-free and d is even, then (H): maxyep» f (x)
e’
d

admits a polynomial-time approximation algorithm with relative approximation ra-
tio ty.

The key linkage from multilinear tensor function F (x!, x2, ..., x%) to the homo-
geneous polynomial function f(x) is the following lemma. Essentially it makes the
tensor relaxation method applicable for (H).

Lemma 3.4 (He, Li, and Zhang [19]) Suppose x',x2, .-, x4 e R", and &, &,
-+, &q are i.i.d. random variables, each taking values 1 and —1 with equal prob-
ability. For any super-symmetric d-th order tensor form F and function f(x) =
F(x,x,---,x), it holds that

d d
El:l_[éjf(zgkak)] :d!F(x],xZ, avare ,xd).
k=1

i=1

Remark that the approximation ratios for (/) hold under the square-free condi-
tion. This is because in this case the decision variables are actually in the multilinear
form. Hence, one can replace any point in the box ([—1, 1]") by one of its vertices
({—1, 1}*) without decreasing its objective function value, due to the linearity. Be-
sides, in the case when d is odd, one may first relax (H) to maxye[—1,1» f(x), and
then directly apply the approximation result for homogeneous polynomial maximiza-
tion over intersection of n co-centered ellipsoids (see [19]). Under the square-free
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Approximation Algorithms for Discrete Polynomial Optimization 13

condition, this procedure is able to generate a feasible solution for (H) with ap-
proximation ratio .Q(n_d:f2 log_(d_])n), which is worse than 7y in Theorem 3.2.
Therefore, we may treat Theorem 3.2 an improvement of the approximation ratio.

We move on to consider the mixed form of discrete polynomial optimization
model (M). It is a generalization of (7T') and (H), making the model applicable to
a wider range of practical problems.

Theorem 3.5 If Flx!, oo xl, x%x% - x2,,x5, x5, ,x%) s square-
d dy ds

free in each xk (k=1,2,--+,5), and one of dp (k=1,2,.--,5) is odd, then

(M): max ;kcgni Fel, x2, -, x%) admits a polynomial-time approximation algo-

rithm with approximation ratio tTys, where

(%)d_l In(1+ V2 [Tie; dildy % (19 ng% - ong_p%-2p,_4-1-1)~1

ds =1,
™™ = _ 1
(2) (1 + V2 [Tey deldi™ % @ na® gy =142y =3
dg > 2.
Theorem 3.6 If Fixlxl, - xbx?, %% x%, o x5, x5, -, x%) s square-
di dy dy
free in each xk k=1,2,---,5), and all dy (k =1,2,---,5) are even, then

(M): max kg Fx',x%, -, x%) admits a polynomial-time approximation algo-

rithm with relative approximation ratio T).

The main idea in the proof is tensor relaxation (to relax its objective function
f (x!,x2, -+, x%) to a multilinear tensor function), which leads to (7). After solving
(T) approximately by Theorem 3.1, we are able to adjust the solutions one by one,
using Lemma 3.4.

3.2 Homogeneous Polynomials in Mixed Variables

Proposition 3.7 When d =d' =1, (T)" MaX i epn ylesm F(x', yY) admits a
polynomial-time approximation algorithm with approximation ratio J2/7.

Proposition 3.7 serves as the basis for (T')" of general d and d'. In this particular
case, (T') can be equivalently transformed into max,cgn x* Qx with @ > 0. The
later problem admits a polynomial-time approximation algorithm (SDP relaxation
and randomization) with approximation ratio 2/ by Nesterov [27].

Recursion is again the tool to handle the high degree case. For the recursion on d,
with discrete variables x*, DR 3.1 is applied in each recursive step. For the recur-
sion on d’, with continuous variables yk, two decomposition routines in He, Li,
and Zhang [19] are readily available, namely the eigenvalue decomposition approach
(DR 2 of [19]) and the randomized decomposition approach (DR 1 of [19]), either
one of them serves the purpose here.
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! .
Theorem 3.8 (T)': maXykcpr yrcgme Fx',x2, .-, x4yl y2 .-y admits a

polynomial-time approximation algorithm with approximation ratio I’T, where

2d—
L= L

|
! —_
Tr = Q/m) T (mny---ng_ymymy---mg_1) 2

= .Q((n]nz CeRg_1mmy - »mdr_l)_f).

From Theorem 3.8, by applying Lemma 3.4 as a linkage, together with the square-
free property, we are led to the following two theorems regarding (H)'.

Theorem 3.9 If F(x,x,---,x,¥,y,---,y) is square-free in x, and either d or d’'

: d d’
is odd, then (H)': maxyepr yesm f(x,y) admits a polynomial-time approximation
algorithm with approximation ratio ty,, where

d—1 d'—1 d—1 _d'—1

7.’;_, :=d!a'%da,”!a"udl(2/71)MTAn_Tm_T =.Q(n_Tm 2 )

Theorem 3.10 If F(x,x, -+, X, y,y, -+, y) is square-free in x, and both d and d’

d d'
are even, then (H)': maxyep». yesn f(x, y) admits a polynomial-time approximation
algorithm with relative approximation ratio Ty,.

By relaxing (M)’ to the multilinear tensor function optimization (7)" and solving
it approximately using Theorem 3.8, we may further adjust its solution one by one
using Lemma 3.4, leading to the following general result.

Theorem 3.11 If

1 1 1 J 1 1 1 [ t
F(x,x, X, sxAsxs5"'ﬁxx1ysy5 9y9 * ay7y9 "’J’)
d) dy d; d!
is square-free in each xk (k=1,2,---,5), and one of dp (k=1,2,---,5) or
one of dy (£ =1,2,--- 1) is odd, then (M)': maXyk g yeegme f(x', X%, x5,

yb, y2, .-, y) admits a polynomial-time approximation algorithm with approxima-
tion ratio t,,, where

!

2d-1 '
2\7? _
Thy = (;) [T et ] sy~
k=1 =1

b=

’ t I —
. (nld‘ ~-nxﬁld*'*‘nsd“_lrmdl -~~m,_]dl—lm,d'_1)

/ ’ ' =
= .Q((nld' ceeitg 1B g ---m,_]d'—lm,d'_l) 2).
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Theorem 3.12 If

1 1 1 S - 1 1 tot t
F(x JX e X e (XL X e XYY e,y ,...’y,y’...’y)

d ds d dy

is square-free in each xk k=1,2,---,8), and all d, (k=1,2,---,5) and
all dy (£ =1,2,---,1) are even, then (M)": max kcpm yeesme fel, 22,50 %5,
y', ¥2, .-+, ¥") admits a polynomial-time approximation algorithm with relative ap-

; 7 ; ’
proximation ratio I'M “

3.3 Inhomogeneous Polynomials in Binary Variables

Extending the approximation algorithms and the corresponding analysis for homo-
geneous polynomial optimization to the general inhomogeneous polynomials is not
straightforward. Technically it is also a way to get around the square-free property,
which is a requirement for all the homogeneous polynomials mentioned in the previ-
ous subsections. The analysis here, like the analysis in our previous paper [20], is to
directly deal with homogenization.

It is quite natural to introduce a new variable, say xj, which is actually set to be 1,
to yield a homogeneous form for Function P:

d
plx) = I;mx,x,m L Xxd 4 foxd
= k
X X X _ _ —_
() () () =ress s
Xh Xh Xh —_—
d
d

where f(x) is an (n 4+ 1)-dimensional homogeneous polynomial function of degree d,

with variable x, i.e., F € RO+D? and ¥ e R, Optimization of this homogeneous
form can be done due to our previous results, but in general we do not have any
control on the solution of x;, which has to be 1 as required by the feasibility. The
following lemma ensures that construction of a feasible solution is possible.

. —k x* 1. k
Lemma 3.13 (He, Li, and Zhang [20]) Suppose ¥* = (7x) € R"*! with |x;| < 1
h

fork=1,2,---,d. Letni,m, -, ng be independent random variables, each taking
values 1 and —1 with E[n] = x,"l' fork=1,2,.-.,d,and let &1,&, -+ &4 be i.id.
random variables, each taking values 1 and —1 with equal probability (thus the mean
is 0). If the last component of the tensor F is 0, then we have

{27 ()
L(E ) ()]

and
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Our last result is the following theorem.

Theorem 3.14 (P) admits a polynomial-time approximation algorithm with relative
approximation ratio tp, where

In(1 ++/2)
i B

= g gt ) =27 ),

We remark that (P) is indeed a very general discrete optimization model. For ex-
ample, it can be used to model the following general polynomial optimization prob-
lem in discrete values:

(D) max p(x)
st. x; € {a’i,aé,m ,a,"m}, i=1,2,---,n.
To see this, we observe that by adopting the Lagrange interpolation technique and
letting

ik
J=1 Ak<m ki T

the original decision variables can be equivalently transformed into
w=j = x=d;, i=12-,n j=12,- m,

where u; € {1,2,---, m;}, which can be further represented by [log, m;] indepen-
dent binary variables. Combining these two steps of substitution, (D) is then re-
formulated as (P), with the degree of its objective polynomial function no larger

than max;<;<a{d(m; — 1)}, and the dimension of its decision variables being
> =i logym;]. o _
In many real world applications, the data {a},aj,---,a,.} (i =1,2,-++,n) in

(D) are arithmetic sequences. Then it is much easier to transform (D) to (P), without

going through the Lagrange interpolation. It keeps the same degree of the objective

polynomial function, and the dimension of its decision variables is > 7_ [log, m;].
The proofs of all the theorems presented in this section are delegated to Appendix.

4 Examples of Application

As we discussed in Sect. 1, the models studied in this paper have versatile applica-
tions. Given the generic nature of the discrete polynomial optimization models (viz.
(T), (H), (M), (P), (T), (H) and (M)"), this point is perhaps self-evident. How-
ever, we believe it is helpful to present a few examples at this point with more details,
to illustrate the potential modeling opportunities with the new optimization models.
We present four problems in this section and show that they are readily formulated
by the discrete polynomial optimization models in this paper.
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