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Preface

This book is primarily intended for physics students who will not
become particle physicists, and a deliberate attempt has been made
to emphasize those parts of particle physics which are applications
of principles shared by other branches of physics or which may be
useful in other branches of physics. However, for the student who
may wish to pursue the study of particle physics further, some
suggestions for further reading are given, and it is hoped that this
book is a suitable bridge to the advanced texts of particle physics.

This book has grown out of lecture courses given to third year
undergraduate students and fourth (final honours) year students.
The later chapters of the book contain material that has been
presented in various seminars. A result of these diverse origins of
the book is that the material becomes more difficult as the reader
progresses further through the main text.

To enable the book to be used by readers with varied amounts of
preparation, some material has been placed in appendices. The
appendices, in part, consist of material that students could rea-
sonably be expected to know, but frequently do not know. Other
reference material has also been placed in the appendices.

The exercises, given at the end of each chapter, should be regarded
as an essential part of the book, as some topics are dealt with more
in the exercises than in the main part of the text. Answers to even-
numbered exercises are given at the end of the book.

A few references are given and are listed at the end of each chapter.
The references have been chosen mainly on the basis of possible
usefulness to the student. An attempt has been made to keep the
list of references small so that there is some chance of the student
looking at some of them.

I would like to thank all my colleagues, including students. at
the Australian National University who helped in many ways with
the preparation of the book.

November 1972
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Familiar particles

1 Introduction
From the study of atomic physics and low-energy nuclear physics,
a great deal has been learned about certain elementary particles. We
begin by briefly reviewing the properties of the familiar elementary
particles of atomic physics.

According to the special theory of relativity, reviewed briefly in
Appendix A. each particle obeys the energy-momentum relation

E> = ('2([)3+M3('2) (1.1)

where M is the mass of the particle when at rest, p is the momentum
and £ is the total energy of the particle. For a particle at rest

= M (1.2)

2 Photons

(1) The work of Planck on black-body radiation showed that light
of frequency v occurs in quanta, called photons, each having energy

E = hv (2.1)

Equation (2.1) was also confirmed by the photoelectric effect. The
relation between energy and momentum in electromagnetic radia-
tion yields for the momentum of the photon

p = E/c = hv/c (2.2)

Equation (2.2) was confirmed experimentally in the study of the
Compton scattering of a photon by a free electron.
From equation (2.2)

(89
%)

E? = ép? (

and so the photon has a rest mass of zero.



2 The physics of elementary particles
Other properties of photons learnt from atomic physics are:

(2) Photons can be created and destroyed in arbitrary numbers, as,
for instance. in bremsstrahlung — when a charged particle is accelera-
ted. as by hitting a target. photons are given off.

(3) The analysis of black-body radiation shows that photons obey
Bose-Einstein statistics — they are bosons. There can be an arbitrary
number of photons in a given state, and the wave function of a
system of photons must be symmetric with respect to interchange
of any two photons.

(4) The photon has spin 1. (More accurately, the square of the
angular momentum of the photon has the value

2h% = 1(1+ 1)h?

It is convenient to refer to a particle whose square of the angular
momentum is

s(s+ Dh?

as having spin s.)

There are two spin states for the photon, with m,= + 1. m his the
z-component of the angular momentum, and the z-axis is taken
along the direction of motion of the photon. These two spin states
correspond to the two types of circularly polarized light. There is no
spin state with n1,=0.

The usual result from atomic spectroscopy of there being 25+ 1
spin states for spin s holds only for a particle for which a frame of
reference can be found in which the particle is at rest, and so holds
only for particles with non-zero rest mass. No rest frame can be
found for the photon which moves with the velocity of light ¢ in all
reference frames.

3 Electrons

(1) The electron, symbol ¢, was the first elementary particle to be
discovered. It has negative charge —e (where ¢=16022x 10" '" C)
and mass

M, = 91096 x 10 28 g

Masses can be measured in the units of energy by using the rest
energy Mc? in place of the mass M. In this way, the rest mass of a
particle is frequently given in MeV (million electron volts) (see
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Appendix H). For the electron,
M, = 0:511 MeV

(2) The study of atomic spectra showed that the electron has two
spin states. The electron has non-zero rest mass, and the number of
spin states must be 25+ 1 where s is the spin. Thus the electron has
spin

o=

S =

(3) Electrons obey Fermi-Dirac statistics; they are fermions. The
wave function of a system of electrons is antisymmetric with respect
to the interchange of any two electrons; and so there can be at most
one electron in a given state — the Pauli exclusion principle. The
Pauli exclusion principle can be illustrated by considering a system
of two (non-interacting) electrons, one in a state with wave function
i and the other in a state with wave function ¢. Then the total wave
function W, antisymmetric with respect to the interchange of
electrons 1 and 2. is

Y(1, 2) = Y(DHp(2)—p(DY(2)

where / and 2 stand for all the coordinates (including spin) of
electrons 1 and 2 respectively. We see that if ¢ =1, then

Y=
— the two electrons cannot occupy the same state.

(4) Electric charge is conserved, and so electrons are not arbitrarily
created or destroyed. The creation or destruction of an electron is
always accompanied by the creation or destruction of some other
particle or particles, as we shall see in more detail later.

4 Protons

(1) The proton, symbol p, which is the nucleus of the hydrogen atom,
has charge +e¢ and mass

M, = 9383 MeV

(2) The study of molecular hydrogen showed that the two protons
in the hydrogen molecule could be arranged in two different ways.
The spins of the two protons could be parallel as in orthohydrogen,
or antiparallel as in parahydrogen. Each proton had two possible
spin orientations relative to the spin of the other proton, and so,
like the electron, the proton has spin 3.
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(3) In orthohydrogen. the wave function is symmetric with respect
to interchange of the spins of the two protons since the two spins
have the same direction. and experiment showed that the wave
function was antisymmetric with respect to the interchange of the
spatial coordinates of the two protons: so that the wave function
is antisymmetric with respect to complete interchange of the two
protons. In parahydrogen. the wave function is also antisymmetric
with respect to complete interchange of the two protons. being
antisymmetric with respect to interchange of the protons’ spins, and
symmetric with respect to interchange of their spatial coordinates.

So protons obey Fermi-Dirac statistics; they are fermions: the
Pauli exclusion principle applies to protons  there can be at most
one proton in any given state.

5 Neutrons

The neutron has symbol » and mass M, =939-6 MeV.

In 1930 Bothe and Becker discovered a very penetrating radiation
given. off when beryllium was bombarded with x particles: this
penetrating radiation was thought to be 7 rays. In 1932 1. Joliot-
Curie and J. F. Joliot-Curie found that this radiation knocked out
protons from hydrogen-rich material, and they suggested that this
was due to Compton scattering — i.e. that the protons were recoiling
from scattering y rays. However, this explanation required the pene-
trating radiation to consist of extremely energetic ;' rays. but with
no explanation of where such energy came from.

In 1932 Chadwick showed that the recoiling protons had been
hit by neutral particles of approximately the same mass as the proton.
He called these neutral particles neutrons. The reaction occurring
when beryllium was bombarded with x particles was

,He*+ ,Be® — C'2+ !

The existence of the neutron was also needed to explain observations
of molecular spectra, which showed, for instance, that the wave
functions of nitrogen molecules were symmetric with respect to
the interchange of the two N'* nuclei, and consequently that the
N'# nuclei were bosons. This could not be understood if the N'*
nucleus was to be made up only of protons and electrons, as this
would require 14 protons and 7 electrons, which constitutes an
odd number of fermions. A system made up of an odd number of
fermions is itself a fermion: for the interchange of two such systems
can be carried out by interchanging their constituent fermions, and
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each interchange of two fermions changes the sign of the total wave
function. In this way. it is also seen that a system made up of an
even number of fermions will be a boson. Then the N'* nucleus is
a boson if made up of 7 protons and 7 neutrons, assuming that the
neutron is a fermion.

From the study of nuclear physics, it is found that neutrons obey
the Pauli exclusion principle and so are fermions, and also that the
neutron has spin 3.

It should be noted that particles with half-odd-integer [(2n+ 1)/2]
spins are fermions. and that particles with integral spin are bosons
(Gamow, 1959). The proton and neutron have similar properties
in many ways, and it is convenient to introduce the term ‘nucleon’
signifying either a neutron or a proton. This aspect of the neutron
and proton will be discussed more fully in Sections 17 and 18.

The particles dealt with above, the photon, electron, proton and
neutron, are sufficient for dealing with all of molecular and atomic
physics. A few more particles are needed in the description of nuclear
physics, a description that is still far from complete as our under-
standing of nuclear forces is very limited in comparison to our
understanding of the forces in atomic and molecular physics.
Finally. we shall encounter a seemingly never ending collection of
particles in dealing with high-energy physics.

It might be argued that an understanding of the particles of high
energy physics is an unnecessary luxury. and that we have sufficient
understanding of our environment in terms of the familiar particles
of atomic and molecular physics. However, we should remember
that we do not yet understand nuclear forces, and so do not really
understand why our surroundings are as they are, instead of being
just clouds of hydrogen. In astronomy and cosmology, there are still
many unsolved problems. such as the nature of quasars - the
peculiar intense sources of energy which seem to be so small that it
is difficult to understand how their great energy arises. It is very
probable that the knowledge about elementary particles gained from
high energy physics is relevant to the understanding and solution of
problems in astronomy and cosmology. The science of elementary
particles is an essential part of modern science with important
consequences for other parts of science.

6 Conservation laws and invariance principles

In classical mechanics, conservation laws appear almost as an
afterthought. For both the path of history. and the usual path trodden
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by the student, the equations of motion were first encountered, and
thelaws of conservation of momentum and conservation of mechani-
cal energy were derived from the equations of motion. The conserva-
tion laws were then extended: for instance, the law of conservation of
energy was extended to include chemical energy and electrical energy.
However, in practical applications, the conservation laws are ex-
tremely useful, as they enable us to say something about complicated
systems even when we do not know the detailed equations of motion
of the systems. For instance, a full description of the collision of two
automobiles would be very complicated, but we do know that
momentum is conserved in such a collision. Similarly, in the case of
collisions of particles, although we do not know the details of the
interactions, energy, momentum and angular momentum are con-
served in the collisions.

In high energy physics. where the equations of motion are as yet
unknown, conservation laws are extremely important. The con-
servation laws of classical mechanics, conservation of energy.
momentum and angular momentum, hold also in quantum mech-
anics. As we shall see later, there are also additional conservation
laws in quantum mechanics.

Another aspect of the importance of conservation laws is that
they are related to invariance principles or symmetry principles. An
invariance principle states that the laws of physics remain unchanged
(are invariant) for certain changes in circumstances. Or in the case
of a particular system, an invariance property or symmetry property
of the system is some operation that can be carried out on the system
which does not alter the physics of the system.

As an example, the laws of physics are invariant under spatial

translations. An experiment performed in London should yield the
same answer as an experiment performed in New York. Also. the
laws of physics are invariant under time translations: an experiment
performed today should yield the same answer as the same experi-
ment performed last year.
_ In both classical mechanics (Landau and Lifshitz, 1969) and
quantum mechanics (Feynman, 1965) invariance principles lead to
conservation laws. For instance. invariance under spatial transla-
tions implies conservation of momentum: invariance under time
translations implies conservation of energy: invariance under
rotations implies conservation of angular momentum.

A large part of the study of elementary particles has been the
search for further symmetries or approximate symmetries.

The treatment given here of the historical development of particle



