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1

Metal Catalysts for the
Conversion of Biomass
to Chemicals

Pierre Gallezot

Institut de recherches sur la catalyse et ’environnement,
Université de Lyon/CNRS,
2 avenue Albert Einstein, 69626,
Villeurbanne Cedex, France

1.1 INTRODUCTION

Extensive literature surveys on biomass conversion to chemicals were recently published
[1-9] revealing the rapid development of new catalytic systems and reaction media
adapted to the structure of biomolecules. The present chapter deals with the design and
performance of metal catalysts employed for the conversion of platform molecules obtained
from carbohydrates, triglycerides, and terpenes into chemicals that are either already
synthesized from fossil resources or consisting of new bioproducts with no synthetic
counterpart. Bifunctional metal catalysts converting biopolymers such as starch, cellulose,
and hemicellulose into a mixture of chemicals that could be employed for the manufacture
of high tonnage end-products such as paper additives, paints, resins, foams, surfactants,
lubricants, and plasticizers will also be considered [7,10]. Because the literature on catalytic
biomass conversion is presently bursting and because a complete survey of catalytic systems
was not possible in the framework of this chapter, focus will be laid on selected examples of
biomass conversion catalyzed by metals, particularly hydrogenation, hydrogenolysis, and
oxidation reactions.

Catalytic Biomass Conversion 1 © 2013 Elsevier B.V. All rights reserved.
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2 . METAL CATALYSTS FOR THE CONVERSION OF BIOMASS TO CHEMICALS

1.2 HYDROGENATION CATALYSTS

1.2.1 Catalysts for the Hydrogenation of Carbohydrates and Derivatives

1.2.1.1 Hydrogenation of Glucose

More than 800,000 ton/y of sorbitol are produced industrially by catalytic hydrogenation
of p-glucose, a cheap and abundant feedstock obtained from starch-containing crops such as
maize, wheat, and potatoes. Sorbitol is used as additives in many industrial products, par-
ticularly in the food, cosmetic, and paper industries, and as building block for the synthesis
of various fine chemicals including vitamin C (Figure 1.1). Highly active and stable metal
catalysts are required for the industrial hydrogenation of glucose. Because selectivities higher
than 99.5% to sorbitol at total glucose conversion are required for a number of applications
epimerization of sorbitol to mannitol and Cannizarro reaction to gluconic acid should be
avoided. The requirements for a long-term stability toward metal leaching and sintering were
well documented, but the leaching of supporting materials in highly chelating reaction media
was often overlooked in the literature. Also, the deactivation of metal catalysts by impurities
in glucose feedstock, or formed by side reactions, and the procedures of catalyst regeneration
were seldom studied. Although sorbitol is a high tonnage commodity product, hydrogena-
tion reactions are still mainly carried out discontinuously in stirred tank reactors at 373453 K
and 5-15MPa of H, pressure in the presence of suspended catalyst powders. The design of
catalyst formulation to replace the prevailing batchwise production by continuous processes
is not well documented.

Most of the current industrial production of sorbitol is performed in stirred tank reactors
loaded with Raney-type nickel catalysts (sponge nickel, skeletal nickel) promoted by various
transition metals. Nickel catalysts present the advantage of a relatively low price and because
of their high density they are easily separated from the liquid phase by sedimentation possibly
accelerated by magnetic methods. Raney-type nickel catalysts are often prepared from Ni-
Al-M alloys where M stands for transition metals such as Mo, W, or Cr, added to nickel-
aluminum melt at a concentration of 0.5-5mol%. The alloy is then attacked with alkali solutions
to remove part of the aluminum and yield highly porous, tri- or polymetallic catalysts.
Alternatively, metal promoters could be added to skeletal nickel by various methods of surface
deposition. The presence of metal promoters favors the stability of the porous framework and
accelerates reaction rates [11-13]. Glucose hydrogenation was studied in a well-stirred, high
pressure batch reactor on Mo-, Cr-, and Fe-promoted Raney-type nickel catalysts prepared by
soda attack on Ni-Al-M alloys [12]. Sn-promoted catalysts were obtained by controlled surface

OH OH
HO o
- OH
H, HO
QR e .
HO - H OH 1 OH OH sorbitol
catalyst . . .
D-glucose +gluconic acid (Carmizarno)

+ marrnitol (e praerization)

FIGURE 1.1 Glucose hydrogenation to sorbitol.



1.2 HYDROGENATION CATALYSTS 3

reaction of Sn(Bu), on the hydrogen-covered surface of a Raney Nickel obtained from a Ni,Al;
alloy. The promoted catalysts were up to seven times more active provid(.ed that metal
promoters were homogeneously distributed with an optimum concentration. The rate
enhancement was attributed to the polarization of C=O bonds of the aldehyde form of glucose
by electropositive metal promoters acting as Lewis acid sites. Iron- and tin-promoted catalysts
deactivated very rapidly because the promoters were leached away from the surface. In
contrast, the aging of molybdenum and chromium-promoted catalysts was attributed to the
poisoning of the active sites by organic species. The major cause of deactivation of commercial
Raney-type nickel catalysts was the presence of gluconic acid formed by the Cannizarro
reaction poisoning catalytic sites and favoring nickel leaching [14], but after many recycles
under industrial operation the loss of active surface area due to metal sintering was also a
cause of deactivation [12]. Several attempts have been made to use supported nickel catalysts
as substitutes for Raney-type nickel. Because of the high nickel loadings required (typically
>40wt.%) to obtain a sufficient activity in industrial operating conditions, the specific surface
area of nickel was usually quite low. The kinetics of hydrogenation of 40 wt.% glucose solution
was studied in a trickle-bed reactor in the presence of an industrial catalyst based on extrudates
of kieselguhr-supported nickel catalysts containing 48.4 wt.% nickel [15]; the catalyst activity
was low (5 mmol h™' g at 403K, 8MPa) and decreased with time because of the progressive
leaching of nickel and support in the reaction medium. Ni-B/SiO, amorphous catalyst
prepared by reduction with KBH, aqueous solutions exhibited a higher activity (TOF: 0.024s™")
than commercial Raney-type catalysts (TOF: 0.013s™") [16]. Ni/SiO, catalysts prepared by
various methods deactivated by metal leaching, metal sintering, and support degradation [17].
Ni/SiO, catalysts prepared by impregnation with nickel ethylenediamine complexes did not
leach significantly after 5h on stream, but they were slightly less active than commercial
catalysts and less selective to sorbitol [18].

Because nickel catalysts are prone to leaching and sintering and because their activities are
comparatively low, the present trend is to develop industrial processes based on supported
ruthenium catalysts. Comparison of the specific activities measured on nickel and ruthenium
catalysts under the same reaction conditions showed that ruthenium was 20-50 times more
active than nickel per mass of metal. Specific reaction rates measured over various ruthenium
catalysts are given in Table 1.1. Rates measured in trickle-bed reactor were lower compared to
stirred tank reactors because of mass transfer limitation between the solid, liquid, and gas
phases. Carbons of various origins have been widely used as supporting material for ruthe-
nium because of their resistance to leaching, and because they adsorb organic impurities
present in feedstocks thus preventing to some extent the poisoning of ruthenium surfaces.
The hydrogenation activities of Ru/C catalysts in slurry reactors were proportional to the
ruthenium surface area and independent of the preparation method [13,19]. Activated carbon
cloths (ACC) present significant advantages with respect to conventional activated carbons
such as efficient mass transfer from the liquid phase, no necessity of decantation or filtration,
and high flexibility to fit into any reactor geometry [20,21]. ACC were prepared from woven
rayon cloths carbonized at 1200 °C under nitrogen and activated at 900 °C under CO,; 0.9 wt.%
Ru/ACC catalysts were very active (2.40 mol h™' g) and selective to sorbitol (99.5% at 99.7%
conversion) and could be easily recycled. The catalytic performances were even better with
10wt.% Pt/ACC catalysts (Table 1.1). In most studies the selectivity to sorbitol was higher
than 98% at total glucose conversion, but the selectivity decreased as the time of contact of
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TABLE 1.1 Reaction Data on Glucose Hydrogenation Over Ruthenium Catalysts

Catalyst Conditions Activity (mol h™" g~ )  Selectivity Ref.

1.6% Ru/C trickle-bed reactor 40 wt.% 0.7 (at 98.5% conversion) 99.6% at 98.5% conv. [19]
glucose, 100°C; 8 MPa

5.6% Ru/C 10wt.% glucose, 120°C, 4MPa >98% [14]

0.9% Ru/ACC 40wt.% glucose, 100°C; 8 MPa 2.4 99.5% at 99.7% conv. [20]

10% Pt/ ACC 40 wt.% glucose, 100°C; 4MPa 1.8 99.5% at 100% conv.  [20,21]

5% Ru/C nanotubes 40wt.% glucose, 100°C, 4 MPa TOF 168h " at 62% conv. [24]

Amorphous Rug-B;; 50 wt.% glucose, 80°C, 4MPa 0.5 [25]

4.5% Ru/SiO, 50wt.% glucose, 100°C, 8MPa 6.0 [26]

0.27% Ru/TiO, 40wt.% glucose, 100°C, 12MPa  11.5 [17]

catalyst with sorbitol solution increased because sorbitol was subject to further conversion to
mannitol. Thus, the selectivity decreased as the time of contact with a Ru/C catalyst loaded
in a trickle-bed reactor was increased beyond 100% conversion [19]; however, using a
Pt-Ru/C bimetallic catalyst containing 1.6 wt.% of ruthenium and 0.2 wt.% of platinum it was
possible to maintain a selectivity higher than 99% even after a long contact time. After long
time on stream in the trickle-bed reactor, a Ru/ALQO; catalyst deactivated because of struc-
tural modification of alumina and of ruthenium poisoning by sulfur compounds, gluconic
acid, and deposition of iron atoms leaching from the reactor walls [22]. The loss of conversion
from 99.9% to 98% experienced by a Ru/Al,O; catalyst after 1080 h on stream was also attrib-
uted to the poisoning of ruthenium by metallic species leached out from the reactor walls [17].
A 3.7% loss of activity was experienced by a 1.6% Ru/C catalyst after 596 h on stream in a
trickle-bed reactor, but the selectivity to sorbitol remained stable at 99.3% and no leaching or
sintering of ruthenium was detected [19]. However, glucose solutions employed industrially
are liable to contain more impurities than those used in academic investigations leading to a
faster deactivation because of the deposition of organic species on the catalyst surfaces. Thus,
an industrial 5% Ru/C catalyst lost 25% of its activity after 300h on stream as a low purity
grade glucose solution was hydrogenated in a trickle-bed reactor [23]; a partial recovery of
catalyst activity was obtained by oxidation with diluted hydrogen peroxide solutions of the
organic species deposited on the catalyst surface.

1.2.1.2 Hydrogenation of Fructose

The hydrogenation of fructose leads to sorbitol and mannitol which has a high added value
as low caloric sweetener (Figure 1.2). The challenge was to maximize by an appropriate choice
of metal catalysts and reaction conditions the yield to mannitol. Sorbitol and mannitol are
formed by hydrogenation of two different cyclic forms of fructose and copper catalysts favor
the formation of mannitol [27]; the selectivity ratio (mannitol formed /fructose converted) was
0.8 on Cu/Si0, catalysts while this ratio was close to 0.5 for other supported metal catalysts.
The kinetics of fructose hydrogenation over a copper catalyst (61 wt.% CuO and 39 wt.% ZnO)
in aqueous solutions were studied in a batch reactor operating at 35-65bar and between 90 and
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CH0H CHOH
OH OH HO
HO HO
Hz OH H2
OH OH OH
HO
OH L OH
CHOH fructose CH0H
sorbital mannitol

FIGURE 1.2 Hydrogenation of fructose.

130°C [28]; the mannitol selectivity was within 60-68% and improved slightly as the hydro-
gen pressure increased or the reaction temperature decreased. The sonification during fruc-
tose hydrogenation reaction enhanced the reaction rate over Cu/SiO, and retarded catalyst
deactivation, but had no influence on selectivity to mannitol [29]. Fructose hydrogenation was
carried out over various Raney-type nickel and copper catalysts [30]; copper was less active
than nickel, but favored the production of mannitol over sorbitol by a 2:1 ratio. Because copper
catalysts have a low hydrogenation activity, attempts have been made to use more active ruthe-
nium or platinum catalysts modified by metal promoters favoring mannitol selectivity. Thus,
the selectivity to mannitol increased from 47% to 63% on Pt/C catalysts promoted by deposi-
tion of 1wt.% tin on a commercial 5wt.% Pt/C catalyst, but the catalyst activity decreased [31].

1.2.1.3 Hydrogenation of Xylose and Furfural

The acid-catalyzed hydrolysis of xylan-type hemicelluloses present in soft woods and straw
yields Cs sugars such as xylose, which can be further dehydrated to furfural (Figure 1.3). The
hydrogenation of xylose into xylitol, a polyol widely employed as food, cosmetic, and phar-
maceutical additives, is achieved industrially in the presence of promoted Raney-type nickel
catalysts affording up to 98% yield, but catalysts deactivate by promoter leaching and surface
poisoning. A slow deactivation was observed as catalysts were submitted to continuous ultra-
sound irradiation [32]. Ru/C catalysts exhibited a higher activity than Raney nickel and were
less prone to deactivation. Thus 40wt.% aqueous solutions of xylose were hydrogenated in

H+ 0 OH

hemicellulose
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H xylose
-H,0 \H20
,HL m—_— Hy f \
-CO2 — "
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ful furfural (l-_) furfurylic OH
tetrahydrofuran ran ke

FIGURE 1.3 Hydrogenation of xylose and furfural.
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a continuous reactor packed with Ru/SiO, and Ru/ZrO, catalysts affording a 99.9% yield to
xylitol [33].

Furfural produced industrially by combined hydrolysis and dehydration of agricultural
wastes or xylose on acid catalysts is hydrogenated industrially to furfuryl alcohol in the liquid
or vapor phase over copper-chromite catalysts (Figure 1.3). A number of studies were aimed
at finding more environmentally acceptable catalysts that could selectively hydrogenate the
carbonyl group and preserve the C=C bonds. The vapor phase hydrogenation at 473K
afforded a 98% yield over Cu-Co/SiO, [34] or over Cu-MgO [35]. The liquid phase
hydrogenation of furfural over supported Pt-Sny; catalyst prepared by controlled surface
reactions of tin on Pt-catalyst yielded 98% of fufuryl alcohol [36]. A switchable system based
on two consecutive fixed-bed flow reactors loaded with copper chromite and Pd/C catalysts,
respectively, was designed to achieve the hydrogenation of furfural in supercritical CO, [37];
depending on temperature and H,-concentration, furfural was hydrogenated selectively to
furfuryl alcohol (97% yield), tetrahydrofurfuryl alcohol (96% yield), 2-methylfuran (90%
yield), 2-methyltetrahydrofuran (82% yield), and furan (98% yield).

The vapor phase decarbonylation of furfural to furan was performed in a fixed-bed reactor at
260°C on Pd/Al,O; catalysts loaded with potassium carbonate to promote the decarbonylation
and suppress hydrogenation side reactions [38]; for an optimum 8wt.% potassium loading, a
99.5% yield to furan was obtained. A continuous hydrogenation of furan in supercritical CO,
was achieved on 5wt.% Pd-catalyst supported on aminopolysiloxane [39]; a 96% selectivity to
THF at 98% conversion of furan was achieved while 1-butanol was the only side product formed
by hydrogenolysis reactions. The hydrogenation of furan to THF was studied over Pt(111) and
Pt(100) single-crystal surfaces and size-controlled 1.0, 3.5, and 7.0nm Pt nanoparticles [40].

1.2.1.4 Hydrogenation of 5-Hydroxymethylfurfural

An extensive review of 5-hydroxymethylfurfural (HMF) production by dehydration of
fructose and other carbohydrates and its use as a building block for chemical synthesis was
published [4]. The main products obtained by catalytic hydrogenation of HMF over supported
metal catalysts under various conditions are given in Figure 1.4. 2,5-dimethylfuran (2,5-DMF)

OH

sterch, cdlliose  -H0 o |
gucose, fructose \ y/

5-hydroxymethyifurfural

(6-HvF)
V Hz l H2
OH OH OH OH\s
o)

0O O
2.5-dimethyfuran

25-bi oth
? '@ggmﬂw}bmnl&bﬁ(hwmxmm}mmw;oﬂmn (2 5-DMF)

FIGURE 1.4 Hydrogenation of 5-hydroxymethylfurfural.
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was obtained with a 71% yield by vapor phase hydrogenolysis of 10wt.% HMF in 1-butanol
solution in a flow reactor loaded with Cu-Ru/C catalyst [41]. A 95% yield to 2,5-DMF was
obtained by heating a solution of HMF in refluxing tetrahydrofuran in the presence of formic
acid, H,SO,, and Pd/C catalyst [42]. The hydrogenation of HMF dissolved in [EMIM]CI and
acetonitrile at 393K under 62bar of H, pressure over Pd/C resulted in a 32% selectivity
to 2,5-DMF at 47% conversion [43]. 2,5-dimethyltetrahydrofuran was obtained with a 79%
yield from fructose by hydrogenation in H,O/toluene/HI mixture in the presence of RhCl,

catalyst [44].

1.2.1.5 Hydrogenation of Levulinic Acid

Levulinic acid is obtained industrially with a 60% yield by combined acid-catalyzed hydro-
lysis and dehydration of cellulose and hemicellulose with the transient formation of HMF [45].
The hydrogenation to y-valerolactone (GVL) (Figure 1.5) was extensively studied because of
the unique physical and chemical properties of GVL which is an ideal liquid for use as a
solvent, as an intermediate in the chemical industry, or for energy storage [46]. GVL was
obtained with a 97% yield by hydrogenation of levulinic acid at 150°C over a 5wt.% Ru/C
catalyst [47]. A continuous conversion over Ru/SiO, catalyst in supercritical CO, resulted
in a 99% yield and allowed an easy separation of GVL from water [48]. Pt/TiO, or Pt/ZrO,
catalysts afforded a 95% yield to GVL with marginal deactivation in a continuous reactor [49].
Vapor phase hydrogenation in a continuous fixed-bed reactor over 5wt.% Ru/C catalysts
afforded a 100% GVL yield for up to 240 h on stream without loss in activity [50]. The hydro-
genation of levulinic acid to GVL was performed using formic acid as hydrogen donor in the
presence of ruthenium-phosphorous complexes immobilized on SiO, [51]. The reduction of
LA and its esters to GVL was also accomplished by catalytic transfer hydrogenation over vari-
ous metal oxide catalysts using secondary alcohols as hydrogen donors [52]; ZrO, was highly
active in both batch and continuous flow reactor studies affording up to 80% yield to GVL.

1.2.1.6 Hydrogenation of Succinic Acid

The bulk of succinic acid (SA) production is currently obtained from maleic anhydride
produced by oxidation of n-butane or butadiene, but recent advances in fermentation
from carbohydrates and purification technologies succeeded to make bio-based succinic
acid economically attractive. The hydrogenation of succinic acid leads to 1,4-butanediol
(BDO), y-butyrolactone (GBL), and tetrahydrofuran (THF) that have a well-established
market (Figure 1.6).The hydrogenation of succinic anhydride to GBL was achieved with a
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FIGURE 1.5 Hydrogenation of levulinic acid.
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fermentable sugars
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FIGURE 1.6 Hydrogenation of succinic acid.

97% selectivity at 97% conversion on Au/TiO, catalysts promoted by small amounts of plati-
num favoring H, dissociation [53]. A 54% yield to GBL was obtained on Pd-catalysts sup-
ported on mesoporous aerogels and a correlation was established between the density of
acidic sites and the final yield to GBL [54]. The selectivity to BDO, GBL, and THF was tuned
by a proper choice of metal catalyst supported on Starbon® mesoporous carbon [55,56]; thus,
Rh/Starbon® exhibited a 90% selectivity to BDO at 60% conversion while Ru/Starbon® was
highly selective to THF.

Bio-sourced succinate obtained by fermentation is subjected to various purification tech-
nologies to eliminate proteins and organic acids present in fermentation broths, but remain-
ing impurities are liable to poison the activity or modify the selectivity of catalysts. Thus the
hydrogenation rate of bio-succinic acid over Pd—Re/C catalysts at 160°C under 150bar of
H,-pressure was lower than on synthetic SA (100% conversion after 83h vs. 46.5h) and a
lower selectivity to BDO (42% vs. 62%) was observed at 75% conversion [57]. A one-pot syn-
thesis yielding 80% of 2-pyrrolidone was achieved by reacting succinic anhydride and ammo-
nia in water solution at 250 °C under 120 bar pressure over Au/TiO, catalysts [53].

1.2.1.7 Hydrogenation of Lactic Acid

Lactic acid (LA) produced by fermentation of carbohydrates was hydrogenated to
1,2-propanediol (PDO) over Cu/SiO, catalyst in vapor phase at 473K affording a 88% yield
[58] (Figure 1.7). A 65% selectivity at 95% LA conversion was achieved over Cu-catalysts
prepared from copper hydroxysilicate catalysts [59]. The liquid phase hydrogenation of LA
at 100-170°C and 7-14 MPa H,-pressure over 5wt.% Ru/C catalyst afforded an 86% yield
to PDO [60]. The effect on the activity of Ru/C catalysts of residual fermentation impuri-
ties in LA has been studied [61]; whereas refined LA exhibited a stable conversion to PDO,
and partially refined LA showed a steep decline in PDO production. The addition of model
impurities to refined LA, such as organic acids, sugars, and inorganic salts, has little effect
on conversion, while amino-acids (alanine, cysteine, methionine) resulted in irreversible
catalyst deactivation (see Figure 1.7).

1.2.1.8 Hydrogenation of Arabinonic Acid

There is a great interest to convert C¢ carbohydrates available in large supply into C; or C,
polyols which are valuable food or care product additives. Thus, glucose can be converted via
a two-step process to arabitol. The first step is an oxidative decarboxylation of glucose into



