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Preface

The logarithmic connection between entropy and probability was first enun-
ciated by L.E. Boltzmann (1844-1906) in his kinetic theory of gases. His
famous formula for entropy S is § = klog W (as engraved on his tombstone in
Vienna) where k is a constant and W is the number of possible microstates
corresponding to the macroscopic state of a system of particles in a gas.
Ignoring the constant k and replacing log W by —log P(E) where P(E) is the
probability of an event E in the probability space (€2, F, P) of a statistical
experiment, C. E. Shannon (1916-2001) looked upon — log P(FE) as a measure
of the information gained about the probability space from the occurrence of
E. If X is a simple random variable on this probability space assuming the
values ay,as, ...,ax from a finite set with P(X = a;) = p; for each j then the
famous Shannon entropy H(X) = — " ; Pjlog pj is the expected information
about (€, F,P) gained from observing X. Centred around this idea of
entropy a mathematical theory of communication was woven by Shannon in
a celebrated pair of papers in the 1948 volume of the Bell System Technical
Journal. Here Shannon established two fundamental coding theorems about
the optimal compressibility of a text in its storage and the optimal capacity of
a channel in communicating a text after encoding,.

The modern approach to information theory is to view a text in any al-
phabetic language as a finite time realization of a stochastic process in discrete
time with values in a finite set (called alphabet) and consider the quantity
—% log P(zo, 1, ..., Tn—1) as the rate at which information is generated by the
text g, x1, ..., Zn—1 during the period [0, n — 1]. Under fairly general conditions
this rate exhibits an asymptotic stability property as n becomes large. Through
the papers of B. Mcmillan, A. Feinstein, L. Breiman, J. Wolfowitz and others
it is now known that an appeal to this stability property enlarges the scope
of Shannon’s coding theorems. This gets enriched further by exploiting the
Kryloff-Bogoliouboff theory of disintegrating an invariant probability measure
into its ergodic components. The first three chapters of this little book are
devoted to Shannon’s coding theorems and their enriched versions. However,
we have not touched upon the coding theorems in their most general form as
presented in the book of Te Sun Han [14].



A decade after the appearance of Shannon’s famous work, A. N. Kol-
mogorov (1903-1987) demonstrated, rather dramatically, how the notion of
the expected rate of generation of entropy or information assumes an intel-
ligence of its own and yields a nonspectral invariant for the classification of
dynamical systems. Since very little extra effort is involved in presenting this
beautiful work I have taken the liberty of including it as a small digression.

In 1932, while laying the mathematical foundations for quantum me-
chanics, John von Neumann (1903-1957) introduced the fruitful notion of en-
tropy for the state of a quantum system. If p is the density operator of the
state of a quantum system then its von Neumann entropy S(p) is defined
by S(p) = —Trp log p. Through the work of A. S. Holevo, B. Schumacher,
W. D. Westmoreland and others as outlined in the book of Nielsen and Chuang
[24] the reader can recognize the role of von Neumann entropy in attempts to
formulate and establish quantum versions of the coding theorems of Shannon
when classical messages are encoded as quantum states and decoding is done
by generalized measurements. Our last and the fourth chapter is devoted to
a self-contained account of these coding theorems in the quantum avatar as
described in the elegant work of A.Winter in his 1999 paper [48].

A large part of the first three chapters of this book does not use anything
more than Chebyshev’s inequality. The ergodic theorem, martingale theorem
and decomposition of an invariant probability measure into its ergodic compo-
nents are used in arriving at the more sophisticated versions of the classical
coding theorems. The last chapter demands nothing more than a knowledge of
operators in a finite dimensional Hilbert space.

The preseat exposition has evolved through the courses of lectures I had
given at the Indian Statistical Institute, Calcutta in 1961, the Tata Institute of
Fundamental Research, Mumbai in 2001 and 2002, the Institute of Mathemat-
ical Sciences, Chennai in 2001 and 2005, the Ramanujan Institute of Advanced
Study in Mathematics at the University of Madras in 2005 and Chungbuk Na-
tional University, Cheongju, Korea in 2005. I am grateful to C. R. Rao who
suggested to me in 1959 the study of information theory for my PhD thesis and
J. Radhakrishnan, R. Parimala, R. Balasubramanian, M. Krishna, V. Arvind,
S. Parvathi, K. Parthasarathy, V. Thangaraj and Un Cig Ji who were instru-
mental in organising these lectures in a congenial atmosphere. I thank Anil
Shukla for his elegant TEX of my notes with patience in spite of my repeated
requests for changes and corrections. Thanks to the careful proof-reading by P.
Vanchinathan a significant control over the number of grammatical, typograph-
ical and TEX errors has been exercised. The support given by my colleagues at
the Delhi Centre of the Indian Statistical Institute is gratefully acknowledged.

Indian Statistical Institute K. R. Parthasarathy
Delhi Centre January 2007
New Delhi - 110 016

India



Preface to the revised edition

The essential feature of the revised edition is the inclusion of a new chapter
devoted to the Knill-Laflamme theory of quantum error correction and its
consequences in the construction of t-error correcting quantum codes. Our
approach is based on the unification of classical and quantum error correcting
codes through imprimitivity systems for finite group actions.

Many typographical error corrections and some minor changes have been
made in the text of the first edition.

I have greatly benefited from discussions with V. Arvind and Harish
Parthasarathy. Ajit Igbal Singh has rendered valuable help in carefully reading
the manuscript and suggesting many improvements. Anil Kumar Shukla has
Texed the revised manuscript showing tremendous patience in fulfilling my re-
quests for repeated changes in the text. The continued support of my colleagues
in the institute has enabled the completion of this revision in reasonable time.
To all of them I express my sincere thanks.

Indian Statistical Institute K. R. Parthasarathy
Delhi Centre September 2012
New Delhi - 110 016

India
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Chapter 1

Entropy of Elementary
Information Sources

1.1 Uniquely decipherable and irreducible codes

We begin with an elementary analysis of maps from a finite set into the free
semigroup generated by another finite set and develop a terminology appropri-
ate to information theory.

Consider any finite set A of cardinality a denoted as #A = a. We say
that A is an alphabet of size a and call any element z in A as a letter from the
alphabet A. Any element w = (x1,22,...,,) in the n-fold cartesian product
A™ of copies of A is called a word of length n, the latter denoted by I(w). It is
customary to express such a word as w = z1z5 ..., by dropping the brackets
and commas. Denote

S = J &

r=1

and for any w; = 2172 ... 2, € A™, Wy = Y1Y2...Yn, € A" define the product
word wywz by wiwe = T1T2 ... Tn, Y12 . . Yn,. Thus (wiws) = l(w1) + I(w2).
Clearly, this multiplication is associative. It makes S(A) a semigroup without an
identity element. We call S(A) the free semigroup or word semigroup generated
by the alphabet A.

Let A, B be alphabets of sizes a, b respectively. A one-to-one (or injective)
map f : A — S(B) is called a code with message alphabet A and encoding
alphabet B. When B is the two point set {0, 1} such a code f is called a binary
code. Any word in the range of a code f is called a basic code word. Start with
acode f: A — S(B) and extend it uniquely to a map f : S(A) — S(B) by
putting

f(w) = f(xr22...20) = f(21)f(22) ... f(n)



2 Chapter 1. Entropy of Elementary Information Sources

for any word w = x125...2, in S(A). Then f is said to be a uniquely deci-
pherable code if its extension f is also one to one. The code f is said to be
irreducible if for any two letters z and y in A, f(y) # f(z) and f(y) cannot
be expressed as f(y) = f(z)w for any word w in S(B). A simple examination
shows that an irreducible code is uniquely decipherable.

We shall now establish a necessary condition for a code f: A — S(B) to
be uniquely decipherable.

Theorem 1.1.1 (Sardinas and Patterson [40]) Let A, B be alphabets of sizes
a, b respectively and let f: A — S(B) be a uniquely decipherable code. Then

PN 2R (1.1.1)

z€A
where I(w) denotes the length of the word w.
Proof. Let
L = max{l(f(z)) |z € A},
¢ = #{z|l(f(z) =r}.
Then the left hand side of (1.1.1) can be expressed as

I e = Z 3 e

rEA r—lml(f (z))=r

= Z b
r=1

= PH™)
where P is the polynomial defined by

L

P(z) = z ez’

r=1

Define . )
N(k) = #{Fw) |we S(4), UFw) =k},

the cardinality of the set of all code words of length k. Clearly, N (k) < b* for
=1,2,... Thus the power series

F(2) =1+§:N(k)zk

converges to an analytic function in the open disc {2z | |z| < b7'}. Introduce
the convention that N(0) = 1 and N (k) = 0 if k¥ < 0. Since every code word



