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Pretace

This text is intended for a first-year graduate-level course on nonlinear systems or
control. It may also be used for self study or reference by engineers and applied
mathematicians. It is an outgrowth of my experience teaching the nonlinear systems
course at Michigan State University, East Lansing. Students taking this course have
had background in electrical engineering, mechanical engineering, or applied math-
ematics. The prerequisite for the course is a graduate-level course in linear systems,
taught at the level of the texts by Antsaklis and Michel [9], Chen (35|, Kailath [94],
or Rugh [158]. The linear systems prerequisite allowed me not to worry about in-
troducing the concept of "state” and to refer freely to ”transfer functions,” "state
transition matrices,” and other linear system concepts. The mathematical back-
ground is the usual level of calculus, differential equations, and matrix theory that
any graduate student in engineering or mathematics would have. In the Appendix,
I have collected a few mathematical facts that are used throughout the book.

I have written the text in such a way that the level of mathematical sophistication
increases as we advance from chapter to chapter. This is why the second chapter is
written in an elementary context. Actually, this chapter could be taught at senior,
or even junior, level courses without difficulty. This is also the reason I have split
the treatment of Lyapunov stability into two parts. In Sections 4.1 through 4.3,
1 introduce the essence of Lyapunov stability for autonomous systems where I do
not have to worry about technicalities such as uniformity, class K functions, etc. In
Sections 4.4 through 4.6, I present Lyapunov stability in a more general setup that
accommodates nonautonomous systems and allows for a deeper look into advanced
aspects of the stability theory. The level of mathematical sophistication at the end
of Chapter 4 is the level to which I like to bring the students, so that they can
comfortably read the rest of the text.

There is yet a higher level of mathematical sophistication that is assumed in
writing the proofs in the Appendix. These proofs are not intended for classroom
use. They are included to make the text on one hand, self contained, and, on the
other, to respond to the need or desire of some students to read such proofs, such as
students continuing on to conduct Ph.D. research into nonlinear systems or control
theory. Those students can continue to read the Appendix in a self-study manner.

This third edition has been written with the following goals in mind:



1. To make the book (especially the early chapters) more accessible to first-year
graduate students. As an example of the changes made toward that end, note
the change in Chapter 3: All the material on mathematical background, the
contraction mapping theorem, and the proof of the existence and uniqueness
theorem have been moved to the Appendix. Several parts of the books have
been rewritten to improve readability.

2. To reorganize the book in such a way that makes it easier to structure nonlin-
ear systems or control courses around it. In the new organization, the book
has four parts, as shown in the flow chart. A course on nonlinear systems anal-
ysis will cover material from Parts 1, 2, and 3, while a course on nonlinear
control will cover material from Parts 1, 2, and 4.

Part 1

Basic Analysis

Chapters 1 to 4

b 4

Part 2
Analysis of Feedback Systems

Chapters 5 to 7
Part 3 Part 4
Advanced Analysis Nonlinear Feedback Control
Chapters 8 to 11 Chapters 12 to 14

3. To update the material of the book to include topics or results that have
proven to be useful in nonlinear control design in recent years. New to the
third addition are the: expanded treatment of passivity and passivity-based
control, integral control, sliding mode control, and high-gain observers. More-
over, bifurcation is introduced in the context of second-order systems. On the
technical side, the reader will find Kurzweil’s converse Lyapunov theorem,
nonlocal results in Chapters 10 and 11, and new results on integral control
and gain scheduling.



4. To update the exercises. More than 170 new exercises have been included.

I am indebted to many colleagues, students, and readers, who helped me in
writing the book, through discussions, suggestions, corrections, constructive com-
ments, and feedback on the first two editions. There are, probably, more than 100
names that I would like to acknowledge, but my fear of inadvertently omitting some
names, leads to me settle for a big thank you to each one of you.

I am grateful to Michigan State University for providing an environment that al-
lowed me to write this book, and to the National Science Foundation for supporting
my research on nonlinear feedback control.

The book was typeset using KTEX. All computations, including numerical so-
lution of differential equations, were done using MATLAB and SIMULINK. The
figures were generated using MATLAB or the graphics tool of IXTEX.

As much as I wish the book to be free of errors, I know this will not be the case.
Therefore, reports of errors, sent electronically to

khalil@msu.edu

will be greatly appreciated. An up-to-date errata list will be available at the home-
page of the book:

www.egr.msu.edu/ "khalil/NonlinearSystems

The homepage also will contain a list of changes from the second edition, additional
exercises, and other useful material.

HASSAN KHALIL
East Lansing, Michigan



Contents

1 Introduction

1.1
1.2

1.3

Nonlinear Models and Nonlinear Phenomena
Examples . . . . . . . oo
1.2.1 Pendulum Equation

1.2.2 Tunnel-Diode Circuit
1.2.3 Mass—Spring System . . . . ... ..o oo
1.2.4 Negative-Resistance Oscillator
1.2.5 Artificial Neural Network
1.2.6 Adaptive Control . . . . .. .. ... ... Lo
1.2.7 Common Nonlinearities
Exercises

...............

.......................

..................

..................................

2 Second-Order Systems

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

Qualitative Behavior of Linear Systems
Multiple Equilibria . . . . .. . ... e
Qualitative Behavior Near Equilibrium Points
Limit Cycles . . . .« o v i it e e e e
Numerical Construction of Phase Portraits
Existence of Periodic Orbits
Bifurcation
Exercises

..............

........................

3 Fundamental Properties

3.1
3.2

3.3

3.4
3.5

Existence and Uniqueness . . . . . . . . ... oo 0o e n e
Continuous Dependence on Initial Conditions

and Parameters . . . . . . . ..o e e e e e e e e
Differentiability of Solutions and Sensitivity

EQUAtiONS . . . . v e e e e
Comparison Principle
Exercises

...........................



‘. 10.

8.2 Region of Attraction

Lyapunov Stability

4.1 Autonomous Systems . . . . . ... Lo o
4.2 Thelnvariance Principle . . . . . . . . .. ... . o o000
4.3 Linear Systems and Linearization
4.4 Comparison Functions . . . . . . . . . . .. ...
4.5 Nonautonomous Systems . . . . . . . ... o
4.6 Linear Time-Varying Systems and Linearization
4.7 Converse Theorems . . . . . . . . . .. . .,
4.8 Boundedness and Ultimate Boundedness
4.9 Input-to-State Stability
4.10 Exercises

Input—Output Stability

5.1 L Stability . . . . . . .. e
5.2 L Stability of State Models
5.3 £2 Gain . . . e e e e e e e e e e
5.4 Feedback Systems: The Small-Gain Theorem
5.5 Exercises

..................................

Passivity
6.1 Memoryless Functions
6.2 StateModels. . . . . . . .. ... e
6.3 Positive Real Transfer Functions
6.4 L, and Lyapunov Stability . . . . ... ... ... . Lo
6.5 Feedback Systems: Passivity Theorems
6.6 Exercises

Frequency Domain Analysis of Feedback Systems

7.1 Absolute Stability . . . . . . ..
7.1.1 Circle Criterion
7.1.2 Popov Criterion . . . . . . . . .. .. L L

7.2 The Describing Function Method

7.3 Exercises

..................................

Advanced Stability Analysis
8.1 The Center Manifold Theorem

8.3 Invariance-like Theorems . . . . . . . . . . . . e e
8.4 Stability of Periodic Solutions
8.5 Exercises

111
112
126
133
144
147
156
162
168
174
181

195
195
201
209
217
222

227
228
233
237
241
245
259



9 Stability of Perturbed Systems 339

9.1 \Vanishing Perturbation . . . . . . . .. .. ... ... ... ... 340
9.2 Nonvanishing Perturbation . . . . .. ... ... . ... ........ 346
9.3 ComparisonMethod . . . . . . . . ... ... . ... .. .. ..., 350
9.4 Continuity of Solutions on the Infinite Interval . . . . ... ... .. .. 355
9.5 |Interconnected Systems . . . . . . ... ... ... o 358
9.6 Slowly Varying Systems . . . . ... ... e e e 365
9.7 Exercises . .. .......... e e e e e e e e e e e e 372
10 Perturbation Theory and Averaging 381
10.1 The Perturbation Method . . . . . . . . .. ... ... ......... 382
10.2 Perturbation on the Infinite Interval . . . . . . . ... ... ...... 393
10.3 Periodic Perturbation of Autonomous Systems . . . . . .. . .. .. .. 397
104 Averaging . . . . . . ... e 402
10.5 Weakly Nonlinear Second-Order Oscillators . . . . . . .. ... .. .41
10.6 General Averaging . . . . . . . .. .. ... ... .. 413
10.7 Exercises . . . . . . ... e e e e e 419
11 Singular Perturbations 423
11.1 The Standard Singular Perturbation Model . . . . . . . ... ... ... 424
11.2 Time-Scale Properties of the Standard Model . . . . . . ... .. ... 430
11.3 Singular Perturbatibn on the Infinite Interval . . . . .. . ... . ..., 439
114 Slow and Fast Manifolds . . . . . .. ... ... ............ 443
11.5 Stability Analysis . . . . .. . ... L 449
11.6 Exercises . . . . . . . .. e e 460
12 Feedback Control 469
121 Control Problems . . . . . . . . ... 469
12.2 Stabilization via Linearization . . . . . . .. ... ... .. ....... 475
12.3 Integral Control . . . . . . . ... ... 478
12.4 Integral Control via Linearization . . . . . . ... ... .. ....... 481
12.5 Gain Scheduling . . . . . . . ... ... 485
12,6 EXercises . . . . . . . . L e e e e e e 499
13 Feedback Linearization 505
13.1 Motivation . . . . . . . L L e 505
13.2 Input-Output Linearization . . . . . . ... ... ... .. e 509
13.3 Full-State Linearization . . . . .. ... ... ... ........... 521
13.4 State Feedback Control . . . . . . ... ... .. ............ 530
13.4.1 Stabilization . . . . . .. ... ... ... 530

1342 Tracking . . . . . . . . . . ..., 540

135 Exercises . . . . . . .. e e 544

<11 -



14 Nonlinear Design Tools

14.1 Sliding Mode Control . . . . . . .. . .. . . . . ... . ... ...
14.1.1 Motivating Example
14.1.2 Stabilization
14.1.3 Trackin€ . . . o v o v oo e
14.1.4 Regulation via Integral Control

14.2 Lyapunov Redesign
14.2.1 Stabilization . . . . . . ... L L
14.2.2 Nonlinear Damping

14.3 Backstepping . . . . . . ... e

14.4 Passivity-Based Control

14.5 High-Gain Observers . . . . . . . . .. ... . ... ... ........
14.5.1 Motivating Example
14.5.2 Stabilization . . .. .. .. ... ..
14.5.3 Regulation via Integral Control

14.6 Exercises

.......................

...........................

.................

............................
.......................
..........................
.......................

..................................

Mathematical Review

Contraction Mapping

C Proofs

<12 -

C.1 Proof of Theorems 3.1 and 3.2
C.2 Proof of Lemma 3.4
C.3 Proof of Lemma 4.1
C.4 Proof of Lemma 4.3
C.5 Proof of Lemma 4.4
C.6 Proofof Lemma 4.5 . . . . . . . . . . e
C.7 Proof of Theorem 4.16
C.8 Proof of Theorem 4.17
C.9 Proof of Theorem 4.18
C.10 Proof of Theorem 5.4

C.11 Proof of Lemma 6.1
C.12 Proof of Lemma 6.2
C.13 Proof of Lemma 7.1

............................
............................

............................

..........................
...........................
............................
............................
............................

......................

C.16 Proofof Lemma 8.1 . . . . . . . . . . ..
C.17 Proof of Theorem 11.1
C.18 Proof of Theorem 11.2
C.19 Proof of Theorem 12.1
C.20 Proof of Theorem 12.2
C.21 Proof of Theorem 13.1
C.22 Proof of Theorem 13.2

.........................

..........................

..........................

..........................

..........................



C.23 Proof of Theorem 14.6 . . . . . . ... . ... ... ... ....... 713
Note and. References 719
Bibliography 724
Symbols , 740
Index 742

.13.



Chapter 1

Introduction

When engineers analyze and design nonlinear dynamical systems in electrical cir-
cuits, mechanical systems, control systems, and other engineering disciplines, they
need to absorb and digest a wide range of nonlinear analysis tools. In this book, we
introduce some of the these tools. In particular, we present tools for the stability
analysis of nonlinear systems, with emphasis on Lyapunov’s method. We give spe-
cial attention to the stability of feedback systems from input—output and passivity
perspectives. We present tools for the detection and analysis of “free” oscillations,
including the describing function metliod. We introduce the asymptotic tools of
perturbation theory, including averaging and singular perturbations. Finally, we
introduce nonlinear feedback control tools, including linearization, gain scheduling,
integral control, feedback linearization, sliding mode control, Lyapunov redesign,
backstepping, passivity-based control, and high-gain observers.

1.1 Nonlinear Models and Nonlinear Phenomena

We will deal with dynamical systems that are modeled by a finite number of coupled
first-order ordinary differential equations

T = fl(taxli"'azn)ula'"7up)
22 = falt, 1,0, Tn, UL, .-, Up)
Tn = folt,Z1,...,Tn, U1, ..., Up)

where z; denotes the derivative of z; with respect to the time variable t and u;, us,
.., Up are specified input variables. We call the variables z1, z2, ..., Z the state
" variables. They represent the memory that the dynamical system has of its past.
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We usually use vector notation to write these equations in a compact form. Define

T [ fi(t,z,u) ]
Uy
T2 f2(t7xau)
U2
T = , U= . y f(taxvu) =
[ Up |
K | fa(t,z,w) |

and rewrite the n first-order differential equations as one n-dimensional first-order
vector differential equation

= f(t,x,u) (1.1)

We call (1.1) the state equation and refer to z as the state and u as the input.
Sometimes, another equation

y = h(t,z,u) (1.2)

is associated with (1.1), thereby defining a ¢g-dimensional output vector y that com-
prises variables of particular interest in the analysis of the dynamical system, (e.g.,
variables that can be physically measured or variables that are required to behave in
a specified manner). We call (1.2) the output equation and refer to equations (1.1)
and (1.2) together as the state-space model, or simply the state model. Mathemat-
ical models of finite-dimensional physical systems do not always come in the form
of a state model. However, more often than not, we can model physical systems
in this form by carefully choosing the state variables. Examples and exercises that
will appear later in the chapter will demonstrate the versatility of the state model.

A good part of our analysis in this book will deal with the state equation, many
times without explicit presence of an input u, that is, the so-called unforced state
equation

&= f(t ) (1.3)

Working with an unforced state equation does not necessarily mean that the input
to the system is zero. It could be that the input has been specified as a given
function of time, u = ~(t), a given feedback function of the state, u = v(x), or
both, u = v(¢,z). Substituting u = v in (1.1) eliminates u and yields an unforced
state equation.
A special case of (1.3) arises when the function f does not depend explicitly on
t; that is,
& = f(z) (1.4)

in which case the system is said to be autonomous or time invariant. The behavior
of an autonomous system is invariant to shifts in the time origin, since changing the
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time variable from ¢t to 7 = t — a does not change the right-hand side of the state
equation. If the system is not autonomous, then it is called nonautonomous or time
varying. .

An important concept in dealing with the state equation is the concept of an
equilibrium point. A point £ = z* in the state space is said to be an equilibrium
point of (1.3) if it has the property that whenever the state of the system starts at
z*, it will remain at z* for all future time. For the autonomous system (1.4), the
equilibrium points are the real roots of the equation

f(z)=0

An equilibrium point could be isolated; that is, there are no other equilibrium points
in its vicinity, or there could be a continuum of equilibrium points.
For linear systems, the state model (1.1)—(1.2) takes the special form

= A(t)r+ B(t)u
y = C(t)z+ D(t)u

We assume that the reader is familiar with the powerful analysis tools for linear
systems, founded on the basis of the superposition principle. As we move from linear
to nonlinear systems, we are faced with a more difficult situation. The superposi-
tion principle does not hold any longer, and analysis tools involve more advanced
mathematics. Because of the powerful tools we know for linear systems, the first
step in analyzing a nonlinear system is usually to linearize it, if possible, about
some nominal operating point and analyze the resulting linear model. This is a
common practice in engineering, and it is a useful one. There is no question that,
whenever possible, we should make use of linearization to learn as much as we can
about the behavior of a nonlinear system. However, linearization alone will not
be sufficient; we must develop tools for the analysis of nonlinear systems. There
are two basic limitations of linearization. First, since linearization is an approxi-
mation in the neighborhood of an operating point, it can only predict the “local”
behavior of the nonlinear system in the vicinity of that point. It cannot predict the
“nonlocal” behavior far from the operating point and certainly not the “global” be-
havior throughout the state space. Second, the dynamics of a nonlinear system are
much richer than the dynamics of a linear system. There are “essentially nonlinear
phenomena” that can take place only in the presence of nonlinearity; hence, they
cannot be described or predicted by linear models. The following are examples of
essentially nonlinear phenomena:

o Finite escape time. The state of an unstable linear system goes to_inﬁnity
as time approaches infinity; a nonlinear system’s state, however, can go to
infinity in finite time.

o Multiple isolated equilibria. A linear system can have only one isolated equi-

librium point; thus, it can have only one steady-state operating point that



