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Introduction to the Series

The problems of modern society are both complex and interdisciplinary. Despite the
apparent diversity of problems, tools developed in one context are often adaptable o
an entirely different situation. For example, consider the Lyapunov's well known
sccond method. This interesting and fruitful technique has gained increasing sig-
nificance and has given a decisive impetus for modern development of the stability
theory of differential equations. A manifest advantage of this method is that it does
not demand the knowledge of solutions and therefore has great power in application.
It is now well recognized that the concept of Lyapunov-like functions and the theory
of differential and integral inequalities can be utilized to investigate qualitative and
quantitative properties of nonlinear dynamic systems. Lyapunov-like functions serve
as vchicles to transform the given complicated dynamic systems into a relatively
simpler system and therefore it is sufficient to study the properties of this simpler
dynamic system. It is also being realized that the same versatile tools can be adapted
to discuss entirely different nonlincar systems, and that other tools. such as the
variation of parameters and the method of upper and lower solutions provide
equally effective methods to deal with problems of a similar nature. Moreover.
interesting new ideas have been introduced which would seem to hold great poten-
tial.

Control theory, on the other hand. is that branch of application-oriented
mathematics that deals with the basic principles underlying the analysis and design
of control systems. To control an object implies tHe influence of its behavior so as to
accomplish a desired goal. In order to implement this influence. practitioners build
devices that incorporate various mathematical techniques. The study of these devices
and their interaction with the object being controlled is the subject of control theory.
There have been, roughly speaking, two main lines of work in control theory which
are complementary. One is based on the idea that a good model of the object to be
controlled is available and that we wish to optimize its behavior, and the other is
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based on the constraints imposed by uncertainty about the model in which the object
operates. The control tool in the latter is the use of feedback in order to correct for
deviations from the desired behavior. Mathematically, stability theory, dynamic
systems and functional analysis have had a strong influence on this approach.

Volume 1, Theory of Integro-Differential Equations, is a joint contribution by
V. Lakshmikantham (USA) and M. Rama Mohana Rao (India).

Volume 2, Stability Analysis: Nonlinear Mechanics Equations, is by A.A. Martyn-
yuk (Ukraine).

Volume 3, Stability of Motion of Nonautonomous Systems: The Method of Limiting
Equations, is a collaborative work by J. Kato (Japan), A.A. Martynyuk (Ukraine)
and A.A. Shestakov (Russia).

Volume 4, Control Theory and its Applications. is by E.O. Roxin (USA).

Volume 5, Advances in Nonlinear Dynamics, is edited by S. Sivasundaram (USA)
and A.A. Martynyuk (Ukraine) and is a multiauthor volume dedicated to Professor
S. Leela.

Volume 6, Solving Differential Problems by Multistiep Initial and Boundary Value
Methods, is a joint contribution by L. Brugnano (Italy) and D. Trigiante (Italy).

Volume 7, Dynamics of Machines with Variable Mass, is by L. Cveticanin (Yu-
goslavia).

Volume 8, Optimization of Linear Control Systems: Analytical Methods and
Computational Algorithms, is a joint work by F.A. Aliev (Azerbaijan) and V.B. Larin
(Ukraine).

Due to the increased interdependency and cooperation among the mathematical
sciences across the traditional boundaries, and the accomplishments thus far
achieved in the areas of stability and control, there is every reason to believe that
many breakthroughs await us, offering existing prospects for these versatile tech-
niques to advance further. It is in this spirit that we see the importance of the
‘Stability and Control’ series, and we are immensely thankful to Gordon and Breach
Science Publishers for their interest and cooperation in publishing this series.



Preface

This monograph describes new methods of analysis and synthesis of multivariable
control systems together with the associated computer algorithms.

The analytical methods of synthesis of optimal linear stationary and periodic
controlled systems, which generalize and unite the traditional approaches (frequency
domain technique and state space method) are introduced. These methods allow us
to obtain the efficient computation algorithms of synthesis optimal regulator and
filter. The frequency domain method involving Wiener-Hopt equation (Hi-optim-
ization) is based on an original parametrization procedure of the stabilizing regulator
set and the particular cases of this approach are the Youla-Jabr-Bongiorno para-
metrization and Desoer-Liu-Murray-Sacks parametrization. We include some in-
genious computing algorithms of solutions of Lyapunov and Riccati equation and
generalized versions, and present new methods for spectral and J-spectral facior-
ization of matrix polynomials and rational matrices and for calculation of the
projections of the element of space L, on the space H,. These arc usually used as
computational procedures in lincar quadratic Gaussian (LQG) problem, and H, und
H . -optimization. The algorithms applicability is illustrated by examples, published
in the various journals and monographs (see for example JEEE Trans. on Aut. Contr.
V. 35, 1990; V. 39, 1994: Systems & Control Letters V. 3, 1987; Computer-Aided
Control Systems Engineering, North-Holland, 1985; Kucera V.A. Discrete Linear
Control: the polynomial equation approach. Praha, Academia 1979; Petkov P. er al.
Computational methods for Linear Control Systems, Prentice-Hall Inc.. Eng. Cliffs.
NJ, 1991) in numerical methods of linear controlled systems optimization.

The book is intended for students, post-graduates and engineers specializing in
control systems and applied mathematics. [t is presumed that the reader is ac-
quainted with the fundamentals of linear theory of controlled systems, matrix al-
gebra and has some experience in computing.
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Introduction

One of the basic problems of control theory is the development of mathematical
methods of synthesis of optimal systems functioning according to the principle of
feedback. Impressive results in this direction have been obtained in the framework of
the so-called lincar quadratic Gaussian (LQG) problem (see Special Issue [1]), when
an optimal regulator of the feedback chain is found to be lincar by minimizing the
quadratic quality criterion under additional Gaussian perturbations. Many results
have been obtained showing the application of this approach to a wide range of
engineering problems independent of the significant features of the engineering de-
sign of control system. At the initial stage of design a lincar model of the controlled
object is frequently used, especially in problems modelled by the equations of larger
dimensions, and the quadratic quality criterion is sufficiently flexible. The desired
characteristics of the system can be obtained by manipulating the parameters
emerging in the criterion (see Bryson [1], Opdenacker ¢r al, [1]). It should be noted
that two approaches cxist within the framework of the LQG-problem; the state space
or the time domain method (see Sorenson [1]) and the method of transfer functions
or frequency domain (see Mac Farlane [1]).

The existence of these two approaches (which are described in detail for example
by Kailath [2] and by Patel and Munro [1]) is demonstrated in a problem of control
of a multivariable stationary linear system where various methods are used in the
description of controlled plant. Thus it is the representation by stat®-space equa-
tions, when the connection between input and output is described by a system of first
order differential equations.

x = Fx+ Mu (0.1)

y=Lx

Here x — state vector, u-vector of control actions (input), y — vector of observable
coordinates (output), F, M, L — constant matrices.
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On the other hand, the representation of connection between input and output can
be made in a form of systems of differential equations of the higher order

Dy (-c%)y =N, <%>u (0.2)

’

d
Dy (a>7) =u, (0.3)

d
o

7 — vector of intermediate variable, D;(-), Dg(-) - nonsingular (polynomial) ma-
trices, N, (), Ng(-) are polynomial matrices of appropriate dimensions. In the terms
of transfer functions (formal replacement d/dr on s). connection between an input
and output looks so, accordingly

or

y=L(Es - F) ' Mu, (0.4)
y =D (s)NL(s)u,

y= N;g(s)D;el (s)u

Here and further E is the identity matrix of appropriate dimensions. Both of the
approaches are presented in a series of works (see Kailath [2], Patel and Munro [1],
etc.). The difference between the approaches (in the first approach the object is
described by a system of differential equations of the first order (0.1), and in the
second the system of higher order equations (0.2), (0.3) is used) involves the appli-
cation of different calculation procedures (for example, to solve algebraic Riccati
equation (ARE), or to factorize rational matrices). Also it is essential that the fre-
quency technique is associated with the parametrization of the set of the regulators
which stabilize the object (see Larin [20]). These approaches replaced each other over
time. Thus, since the 60" the time domain method has been developed intensively
and reduces the problem of optimal regulator or filter construction to the solution of
ARE (see Athans [1], Bryson and Ho-Yu-Chi [1], Doyle et al. [1], Kwakernaak and
Sivan [1], and Sage and White [1]). Although there are obvious advantages of this
approaches, there is a series of classes of stationary problems and applications,
where the immediate application of standard procedure of the time domain method
is certainly difficult (degenerate or coloured noise in the measurement channel,
problems, where the seperation theorem (see Bryson, Ho-Yu-Chi [1]) or separation
property (see Kailath [2]) can not be used, problems with delay in controllers etc.).
This situation has been examined by Youla e al. [1] and the advantages of the
frequency domain approach have been noted (based on Wiener-Hopf equation) in
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regulator synthesis. The following example was cited. Let the object motion be
described by the stochastic equation

x=Fx+ Mu+E§. (0.5)

S R

It is necessary to {ind the regulator equation (transfer function K(s))

u= K(s)y, y=Lx+0 (0.6)

L=[-1 1],
minimizing the quadratic quality criterion

r

. C, 5
= Il_lr}l\ﬁ</ (x R.\'-—cu')d1>. (0.7)
.

I -1 _
R = { Lo ,and ¢ 1s scalar.
The other values are as follows: x, v, £ and © are phase vector, control actions, outer
perturbation and noise in the measurement channel respectively. It is assumed that €
and © are stationary Gaussian processes with covariational matrices

1)) = U - I g~ 0
(E(€ (7)) = (e = 7), ”‘[o 0]

(O()O(7)) = a2 0(1 = 7).

m
Here 8(¢) is Dirak o-function, () is the calculation of the mathematical expectation.
The prime (') indicates transposition.

If ¢ > 0, decision of a problem is divided on the decision of a problem of state
feedback (briefly stated in p. 2 of Chapter 3) and problem of finding the estimate
state (which is the output of the Kalman-Bucy filter). The above theorem, estab-
lishes this property, (the separation theorem), states: the decision of a problem of
synthesis of optimum feedback law has a form

u=—c'M'S\%
Where the symmetric matrix S), being the solution of ARE
SIF+FS —SMc'M'S;+R=0 (0.8)

and x - the estimated state, determined by the following system of equations
(Kalman—Bucy filter)
dx

5 = FE+Mu+ Ny - Li), N= 0251
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The matrix S» appearing in this relation, satisfies following ARE
FSy+ S:F = $1L'0,° LS, + ¥ =0 (0.9)
In other words, here the transfer function of a controller has a form
K(s)=—c"'M'S\(Es— F+ Mc™'M'S, + $:L'0;> L)™' $: L0}

I in (0.7) ¢ = 0 the separation theorem does not “work™, and loses the sense of the
equation (0.8), but solution of the problem exists and has the form

» (;—;+12)s—§—:

Yetif o,, = 0. the equations (0.8) and (0.9) lose sensc. But in this casc a solution also
exists and has the form:

(0.10)

. 1 7

l\(s)_3 g5 (0.11)
In Youla er al. [1] it is stressed that very simple regulators with transfer functions
(0.10) and (0.11) can not be obtained by the standard procedures of the state space
method. It is important that in Youla er al. [1] a key corrclation of the modern
frequency domain methods of synthesis is presented. Cheng and Pearson (1] are of
the opinion that this is the most useful result of the frequency method of synthesis:
the so-called parametrization of the set of regulator ensuring stability of the closed
system “object + regulator”. Let as in (0.4) the matrix of transfer function of the
object G(s) be represented as the “‘ratio’ of two polynomial matrices (matrix-frac-
tion description (MFD) Kailath [2], and Patel and Munro [1])

G(s) = DL'(s)Ni(s) = Nr(s)D} ' (5) (0.12)
The polynomial matrices X(s) and Y(s) satisfy the Diophantine equation
Dy (s)X(s) + Np(s)Y(s) = E, (0.13)

Then the set of all regulators K(s) stabilizing the object (0.12) is described (para-
metrized) by the following relation (see Youla et al. [1])

K(s) = ((Y(s) + Dr(s)®(s))(X(s) = Nr(s)®(s))”" (0.14)

where the matrix ®(s) is analytical for Re(s) > 0. Relation (0.14) allows us to put
down the optimizing functional (the expression (0.7)) in the frequency domain, i.e. to
interpret it as a square of a norm in Hardi space H, of the corresponding transfer
function, and therefore, to reduce the optimization problem to the choice of function
®(s) which minimizes this norm. We recall that the Hardi space H, (see Glover [1],
Grimble [2], Koosis [1] and Kucera [2]) consists of complex-valued function f{s)
being analytical on the open right half-plane and satisfying the condition

1/2

If]l = sup | (2m)~" / A +jw)idw| < oo
£>0
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The Hardi space H; of matrices consists of the matrices F(s) with elements from H,
and the norm

A = (2mi)~"! / trace F'(—s)F(s) ds.

—io0

Similarly we determine the Hardi space H, over the unit circle. In scalar case this
space of all series

=Y fi, DIl <
k=0 k=0

with the norm

L}

uf||2=;|fkﬁ=2im § (r(5)m)F
- lzl=1

In matrix case the norm determined as follows
Z 2 = 1 f 4 el E
IFEIP =5= ¢ (trace F)F(:™)) 5

l=1=1

Note that there is an increasing interest in the frequency methods of synthesis. The
idea seems appropriate, as presented in Kailath [2] that the descriptions of the object
in terms of transfer functions or in terms of state space are in fact two extremes of the
whole spectrum of the possible ways of describing finite dimensional system. Either
description maybe used, though the situations are possible, when joint consideration
of these forms seems natural. This idea (the combination of time and frequency
approaches) is widely used in the present monograph in the development of both
optimization procedures and numerical algorithms. The optimization procedures are
based on the parametrization by (Larin et al. [1]) which is similar, as noted in (Park
and Bongiorno [1]), to the parametrization (0.13) and (0.14), but are more versatile.
The basic idea of it is as follows. The set of regulators which stabilize the object
(0.12) is parametrized by (1.3-12) from (Larin et al. [1])

K(s) = =(B(s) + B(s)N1) ™ (2(5)Dr(s) — A(s)), (0.15)

where the polynomial matrices A(s) and B(s) ensure the Hurwits state or equality to
the constant of determinant of the matrix

_ | Dels) —Np(s)
Z = [ Als) B(s) (0.16)
Note that in (Larin et al. [1]) the relation (0.15) was obtained in the process of
algorithmization of the procedure of choice of the variable function during the
reducing the problem of optimization to the Wiener-Hopf equation. It is important
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that this approach proves to be efficient both as applied not only to the feedback
systems and also in optimization problem, where the feedback chain is absent and
thus, the notion of stability or stabilization of closed system is meaningless (see p. 3
sec. 1 of Chapter 2)

Naturally, in the case of feedback systems this approach enables the known al-
gorithms of the stabilizing regulator set parametization (see Desoer er al. [1] and
Youla et al. [1]) to be obtained and the series of new algorithms to be derived (for
example, the matrices A(s) and B(s) may be found by the solution of ARE, rather
than the Diophantine equation. When the matrices A(s) and B(s) satisfy the Dio-
phantine equation

B(s)Dr(s) + A(s)Ng(s) = —E (0.17)

then, as it is shown (see p. 2, Section | of Chapter 2) that parametrizations (0.15),
(0.17) and (0.13), (0.14) are equivalent (see also Kailath [2], p. 540).

Before reviewing the contents of the monograph we note that the results cover the
investigations (see Alizv, Bordyug er al. [15], Aliev, Larin et al. [1], Larin et al. [1, 3])
with the exception of control problems with delay (see Aliev, Bordyug et al. [1],
Aliev, Larin et al. [1]) which have continue in (Aliev, Bordyug et al. [16], Aliev, Larin
(2, 4-7] and Larin, Aliev [2]). Thus, Chapters | and 2 present analytical methods and
the second part of the monograph (Chapter 3, 4) deals with the development of
numerical algorithms (the list of which is given in the contents list) covering the
computing procedures of the state space method and frequency domain technique.
Note that the original algorithms are presented and as a rule, these do not duplicate
those cited in (Laub [2] and Petkov et al. [2]).

In Chapter 1, the state space method procedures are modified to solve the LQG-
problem in non-standard conditions. The first section of this Chapter is introductory
and presents known results of LQG-problem for continuous and discrete time in-
cluding the case of steady state.

Further, the solution of the LQG problem is constructed using an asymptotic
approach in the case of continuous time and steady state, when the restriction on the
controllers and the noise intensity in the measurement channel tend to be zero (as
applied to the above-cited example see Youla et al. [1]) this corresponds to the cases
¢— 0 and o, — 0). In this case, the solution of the problem is reduced to the
construction of solution to ARE of smaller dimensions. However, the traditional
approach does not work properly in every case, for example, when the eigenvalues of
Hamiltonian matrix are close to the imaginary axis (quasiconservative or weakly
damped systems). In this regard a special asymptotic procedure is described for the
construction and refinement of an approximate solution to the problem of weak
control of weakly damped systems. It is known that in such problems, the approx-
imate solution (after substitution into ARE) does not minimize the norm of residual
matrix and therefore special techniques are incorporated to construct asymptotic
expansion to the solution.

Further, in the fourth section of chapter 1 a special case of the linear quadratic
problem is described where the Hamiltonian matrix possesses zero eigenvalues. This
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complicates the construction of the desired solution to ARE in such problems. The
last section deals with the problem of optimal regulator syntheses, when the object
motion is described by a periodic system of differential and difference equations or
difference ones. Such problems are associated with the problem of design of vehicles
on magnetic cushion, biped apparatus. The algorithm presented here allows the
solution to the problem in the case of a singular matrix as well that which specifies
the quadratic form of the control actions in the optimized functional. Naturally, this
algorithm is also efficient when the above matrix is ill-conditioned.

Chapter 2 is devoted to the development of the frequency domain method of
synthesis. Here the frequency method is presented based on Wiener-Hopf equation
and minimization of H,-norm.

The first section of Chapter 2 details the parametrization of the form of (0.15),
(0.16). This procedure is compared with that of (0.12), (0.14). It is noted that the
parametrization problem emerges as well in the solution of the problems in-
dependent of the synthesis of optimal feedback chain.

In the second section, the solution of the problem of optimal regulator synthesis is
introduced and algorithms of the polynomial approach are shown to follow from the
presented solution under certain restrictions of the class of problems under con-
sideration (the coloured noise can not be presented in the measurement channel).
Also, a generalized version of the factorizational Anderson-Moor identity is pre-
sented.

The expansion of applications of the frequency domain method is due to the
formulation of problems in terms of minimization of various norms (H., H3, I' etc.)
Moreover, a certain unification of the statements is now apparent (for example of
the standard problem (see Doyle et al. [1]), model matching problem (see Sebryakov
and Semenov [2], etc.). According to this technique, by using the parametrization
(see Desoer et al. [1] and Youla er al. [1]) of the regulator set ensuring stability of the
closed system, the inital problem is reduced to a model matching problem the so-
lution of which is obtained by minimization of a norm. -

The third section of Chapter 2, the problem of stabilization is formalized in terms
of a standard problem based on parametrization (0.15), (0.16). Regulator (0.15) is
also proved to stabilize the object when in (0.16) the matrices D/ (s) and N.(s) are
not polynomial (generalized version of parametrization (see Desoer er al. [1])).
Further, the problem is formulated, in terms of a model matching problem and its
solution is found to correspond to the H,-norm minimization. The independence of
the solution (the transfer function of optimal regulator) of the concrete choice of the
matrices A(s) and B(s) in (0.16) is shown. In conclusion, the optimization problem
under non-zero initial conditions is treated as applied to the singular systems. In last
section, the so-called systems with several degrees of freedom are analysed. The
problem of the servomechanism synthesis has two degrees of freedom by definition,
and three degrees of freedom when the outer perturbation is measured, etc. It is
essential that in each case an appropriate parametrization of the regulator set is
constructed. Also based on the approaches (Aliev, Larin et al. [1], and Larin et al. [3])
it is shown how the corresponding parametrization may be obtained from the
parametrization (0.15), (0.16).



