Handbook on INJECTABLE DRUGS Lawrence A. Trissel American Society of Health-System Pharmacists® # Handbook on INJECTABLE DRUGS 15th Edition American Society of Health-System Pharmacists® Bethesda, Maryland LAWRENCE A. TRISSEL, F.A.S.H.P., is the author of the *Handbook on Injectable Drugs*. Any correspondence regarding this publication should be sent to the publisher, American Society of Health-System Pharmacists*, 7272 Wisconsin Avenue, Bethesda, MD 20814, attn: Special Publishing. The information presented herein reflects the opinions of the author and reviewers. It should not be interpreted as an official policy of ASHP or as an endorsement of any product. Drug information and its applications are constantly evolving because of ongoing research and clinical experience and are often subject to professional judgment and interpretation by the practitioner due to the uniqueness of a clinical situation. The author, reviewers, and ASHP have made every effort to ensure the accuracy and completeness of the information presented in this book. However, the reader is advised that the publisher, author, contributors, editors, and reviewers cannot be responsible for the continued currency of the information, for any errors or omissions, and/or for any consequences arising from the use of the information in the clinical setting. The reader is cautioned that ASHP makes no representation, guarantee, or warranty, express or implied, that the use of the information contained in this book will prevent problems with insurers and will bear no responsibility or liability for the results or consequences of its use. Director, eHealth Solutions Division: Jeffery Shick Assistant Director, eHealth Solutions Division, and Clinical Informaticist: Edward D. Production: Johnna Hershey, Kristin Eckles, Bill Fogle Cover Design: David A. Wade Cover photo is from www.bigfoto.com. Printed on 40# Domtar Westminster Opaque, FSC certified, 10% PCW content ©2009, American Society of Health-System Pharmacists, Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without written permission from the American Society of Health-System Pharmacists. ASHP* is a service mark of the American Society of Health-System Pharmacists, Inc.; registered in the U.S. Patent and Trademark Office. ISBN: 978-1-58528-213-5 To those pharmacists who understand that research is part of the mission of pharmacy, and, as always, To Pam, for her love, forbearance, and continuing support #### **ACKNOWLEDGMENTS** I would gratefully like to acknowledge the valuable contributions of the following individuals, who served as reviewers for the fifteenth edition of the *Handbook on Injectable Drugs*. TODD W. CANADA, Pharm.D., BCNSP, FASHP, Director, Critical Care/ Nutrition Support, Division of Pharmacy, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas N. PAULINE THOMAS PARKS, M.S., Consultant Pharmacist, Houston, Texas #### **PREFACE** The *Handbook on Injectable Drugs*, 15th edition, is the most recent contribution in this continuing series. With its publication, all previous editions are considered out of date. For proper use of this reference work, the reader must review the *How to Use the Handbook* section that immediately follows this preface. This section will acquaint the user of the *Handbook* with its organization, content, structure, summarization strategy, interpretation of the information presented, and limitations of the published literature on which the *Handbook* is based. Without a good working knowledge of these points, the *Handbook* may not be used to its best advantage or even interpreted correctly. The 15th edition of the *Handbook on Injectable Drugs* brings together a wealth of information on 359 parenteral drugs commercially available in the United States and in other countries. The information in the 15th edition is accumulated from 2723 references, including 100 new to this edition. As for each previous edition, the monographs have been completely updated. In addition to the updated monographs, 13 additional monographs on parenteral drugs that are new to this edition are presented. These include the following drugs: Anidulafungin Aripiprazole Atosiban acetate Bortezimib Caspofungin acetate Levothyronine sodium Micafungin sodium Nesiritide Pralidoxime chloride Tetracaine hydrochloride Tigecycline Voriconazole Ziconatide acetate #### Heritage of the Handbook The involvement of the pharmacy profession with the issues surrounding parenteral drug compatibility extends back over 50 years. The first research paper published on this topic appeared in 1955 in the old *Bulletin of the American Society of Hospital Pharmacists*. Robert C. Bogash, then Director of the Pharmacy Department at Lenox Hill Hospital in New York City, wrote a paper entitled "Compatibilities and Incompatibilities of Some Parenteral Medications." In this groundbreaking paper, Mr. Bogash presented compatibility results on an array of parenteral drug combinations. This paper constitutes the earliest effort to compile such information for pharmacists to use. Mr. Bogash also noted the following obligation: "It is, therefore, the responsibility of the hospital pharmacist to be as fully aware of these [compatibility] phenomena as possible." In subsequent years, a number of articles on drug compatibility and stability appeared, from both pharmacists and the pharmaceutical industry. In 1967, *Intravenous Therapy* by Jon T. Williams and Daniel F. Morovec was published. This book was the first compilation of parenteral drug compatibility in book form and the first to include tables of compatibility information along with text discussions. Other early efforts at compiling parenteral drug stability and compatibility information included *Intravenous Additive Incompatibilities* in 1970 from the National Institutes of Health, Clinical Center, *Cutter* (now King) Guide to Parenteral Admixtures in 1971, and the Parenteral Drug Information Guide in early 1974. The experience of being the principal author on the *Parenteral Drug Information Guide* was valuable to me, although not for the excellence of the work. Indeed, reviews were mixed. Rather, the faults of this work served as a valuable learning experience, providing an understanding of problems and a focus on things to avoid. In early 1975, I started over and began work on a new compilation that would become the Handbook on Injectable Drugs. The goal was to create the most comprehensive and complete compilation possible summarizing the original published research literature into a new concise, standardized format. The succeeding 20 months were spent compiling the text and tables for the first edition of the Handbook. I estimate that over 2400 hours of evenings, weekends, holidays, and vacation went into preparing the manuscript. In this pre-computer era, the manuscript had to be written in long hand (both text and tables) and then typed, corrected, and re-typed. My wife, Pam, had the unenviable job of typing all of those thousands of manuscript pages. The first four editions of the Handbook were prepared in this time-consuming and laborious manner—a process unimaginable in this computerized age. The first edition of the Handbook was prepared from the information in 297 references, was composed of 430 pages of material, and—at 6 inches by 9 inches— was truly handbook size. The first edition of the Handbook on Injectable Drugs appeared in January 1977. Thankfully, it received good reviews from journal editors and book reviewers, and, most importantly, approval by the pharmacists who were using it. In my initial conceptualization of the project, I did not foresee in any way the vast growth of this work or its enduring nature. I could not have imagined that within a few years the *Handbook* would be found in most hospital and home care pharmacies in the United States and in much of the rest of the world as well. And I certainly did not think this project would become a life's work. But the *Handbook* has now been in continuous publication for three decades. It has grown to incorporate the information from more than 2723 references based principally on laboratory research but also including observations from practice when the observations can be verified. Throughout the *Handbook's* publication history, the intent of this work has remained unchanged: to organize and summarize in a concise, standardized format the results of the primary research in parenteral drug stability and compatibility to facilitate its use in clinical practice settings for the benefit of our patients. #### Note of Appreciation I want to thank a number of individuals who have helped in the creation of the 15th edition of the *Handbook on Injectable Drugs*. Mary Baker, Todd Canada, John Iazzetta, William Dana, Yanping Zhang, and especially N. Pauline Thomas Parks contributed their time and talents to the challenging review process of a difficult manuscript. Their input helps to make the *Handbook* a better resource. In addition, Johnna Hershey and Luan Corrigan undertook and conducted the process that makes a book from a difficult manuscript and have done so in exemplary form, as always. Thanks for all your help. And of course my wife, Pam, has again had to endure the enormous time commitment that the *Handbook* represents. I recognize that I have spent much of our lives together with papers, proofs, and publishing deadlines that might have otherwise been spent with her. I have the deepest gratitude for her forbearance, tolerance, and support over many decades that have made my contribution to this work possible. #### One Last Word I have spent over 30 years compiling, writing, revising, and proofing the various editions of *Handbook on Injectable Drugs*. To me, the *Handbook* has been a calling, a bedrock professional activity that I have always made paramount, and a true labor of love. From my original conception and design throughout the tens of thousands of hours spent preparing the many editions of this work, I have always wanted to continue providing this resource for the benefit of the members of our profession and the patients they serve. I have thought of the *Handbook* as the principal professional undertaking and contribution that I was here to perform. Though much sacrifice of time and other life goals was required, I have been willing, indeed eager, to continue this difficult and demanding undertaking over all these years in the knowledge that my efforts were providing a useful and valuable tool in patient care. For those many individuals, colleagues, and friends who have expressed their gratitude for my efforts over three decades, it is I who am grateful. I am grateful for those kind words that have encouraged me throughout the endless procession of late nights and early mornings, weekends, holidays, and vacations, all seemingly countless in number, spent on this undertaking. And to the members of the profession of pharmacy, especially those "in the trenches" of patient care who have found the *Handbook* useful, I am glad I could help. Thank you for this opportunity to serve. LAT January 2008 #### HOW TO USE THE HANDBOOK #### What Is the Handbook? The Handbook on Injectable Drugs is a collection of summaries of information from the published literature on the pharmaceutics of parenteral medications as applied to the clinical setting. The Handbook is constructed from information derived from 2723 references with the information presented in the standardized structure described below. The purpose of the Handbook is to facilitate the use of this clinical pharmaceutics research by knowledgeable health care professionals for the benefit of patients. The summary information from published research is supplemented with information from the labeling of each product and from other references. The information base summarized in the *Handbook on Injectable Drugs* is large and highly complex, requiring thoughtful consideration for proper use. The *Handbook* is not, nor should it be considered, elementary in nature or a primer. A single quick glance in a table is not adequate for proper interpretation of this highly complex information base. Proper interpretation includes the obvious need to consider and evaluate all relevant research information and results. Additionally, information on the formulation components, product attributes (especially pH), and the known stability behaviors of each parenteral drug, as well as the clinical situation of the patient, must be included in a thoughtful, reasoned evaluation of clinical pharmaceutics questions. #### Who Should Use the Handbook? The Handbook on Injectable Drugs is designed for use as a professional reference and guide to the literature on the clinical pharmaceutics of parenteral medications. The intended audience consists of knowledgeable health care professionals, particularly pharmacists, well versed in the formulation and clinical use of parenteral medications and who have the highly specialized knowledge base, training, and skills set necessary to interpret and apply the information. Practitioners who are not well versed in the formulation, essential properties, and clinical application of parenteral drugs should seek the assistance of more knowledgeable and experienced health care professionals to ensure patient safety. Users of the *Handbook* must recognize that no reference work, including this one, can substitute for adequate decision-making by health care professionals. Proper clinical decisions must be made considering all aspects of the patient's condition and needs, with particular attention to the special demands imposed by parenteral medications. The *Handbook* cannot make decisions for its users. However, in knowledgeable hands, it is a valuable tool for the proper use of parenteral medications. #### Organization of the Handbook The *Handbook on Injectable Drugs* has been organized as a collection of monographs on each of 359 drugs. The monographs are arranged alphabetically by nonproprietary name. The names of the drugs follow the style of *USAN and the USP Dictionary of Drug Names*. Also included are some of the trade names and manufacturers of the drug products; this listing is not necessarily comprehensive and should not be considered an endorsement of any product or manufacturer. All of the information included in the *Handbook* is referenced so that those who wish to study the original sources may find them. In addition, the *American Hospital Formulary Service* Classification System numbers have been included to facilitate the location of therapeutic information on the drugs. The monographs have been divided into the subheadings described below: **Products**—lists many of the sizes, strengths, volumes, and forms in which the drug is supplied, along with other components of the formulation. Instructions for reconstitution (when applicable) are included in this section. The products cited do not necessarily constitute a comprehensive list of all available products. Rather, some common representative products are described. Furthermore, dosage forms, sizes, and container configurations of parenteral products may undergo significant changes during the lifespan of this edition of the *Handbook*. Following the product descriptions, the pH of the drug products, the osmotic value(s) of the drug and/or dilutions (when available), and other product information such as the sodium content and definition of units are presented. Practitioners have not always recognized the value and importance of incorporating product formulation information into the thought process that leads to their decision on handling drug compatibility and stability questions. However, consideration of the product information and formulation components as well as the properties and attributes of the products, especially pH, is essential to proper interpretation of the information presented in the *Handbook*. **Administration**—includes route(s) by which the drug can be given, rates of administration (when applicable), and other related administration details. The administration information is a condensation derived primarily from the product's official labeling and the *American Hospital Formulary Service*. For complete information, including dosage information sufficient for prescribing, the reader should refer to the official labeling and therapeutically comprehensive references such as the *American Hospital Formulary Service*. **Stability**—describes the drug's stability and storage requirements. The storage condition terminology of *The United States Pharmacopeia*, 30th ed., is used in the *Handbook on Injectable Drugs*. The United States Pharmacopeia defines controlled room temperature as "A temperature maintained thermostatically that encompasses the usual and customary working environment of 20° to 25°; that results in a mean kinetic temperature calculated to be not more than 25°; and that allows for excursions between 15° and 30° that are experienced in pharmacies, hospitals, and warehouses." (All temperatures are Celsius.) Protection from excessive heat is often required; excessive heat is defined as any temperature above 40 °C. Similarly, protection from freezing may be required for products that are subject to loss of strength or potency, or destructive alteration of their characteristics in addition to the risk of container breakage.¹ Some products may require storage at a cool temperature, which is defined as any temperature between 8 and 15 °C, or a cold temperature, which is defined as any temperature not exceeding 8 °C. A refrigerator is defined as a cold place in which the temperature is maintained thermostatically between 2 and 8 °C. Freezer storage refers to a place in which the temperature is maintained thermostatically between -25 and -10 °C. In addition to storage requirements, aspects of drug stability related to pH, freezing, and exposure to light are presented in this section. Also presented is information on repackaging of the drugs or their dilutions in container/closure systems other than the original package (e.g., Table 1. Solution Compatibility #### Monograph drug name | Solution | Mfr | Mfr | Conc/L | Remarks | Ref | C/I | |----------|-----|-----|--------|---------|-----|-----| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | - 1. Solution in which the test was conducted. - 2. Manufacturer of the solution. - 3. Manufacturer of the drug about which the monograph is written. - 4. Concentration of the drug about which the monograph is written. - 5. Description of the results of the test. - 6. Reference to the original source of the information. - 7. Designation of the compatibility (C) or incompatibility (I) of the test result according to conventional guidelines. Table 2. Additive Compatibility #### Monograph drug name | Drug | Mfr | Conc/L | Mfr | Conc/L | Test
Soln | Remarks | Refs | C/I | |------|-----|--------|-----|--------|--------------|---------|------|-----| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | - 1. Test drug. - 2. Manufacturer of the test drug. - 3. Concentration of the test drug. - 4. Manufacturer of the drug about which the monograph is written. - 5. Concentration of the drug about which the monograph is written. - 6. Infusion solution in which the test was conducted. - 7. Description of the results of the test. - 8. Reference to the original source of the information. - 9. Designation of the compatibility (C) or incompatibility (I) of the test result according to conventional guidelines. Table 3. Drugs in Syringe Compatibility #### Monograph drug name | Drug (in syringe) | Mfr | Amt | Mfr | Amt | Remarks | Ref | C/I | |-------------------|-----|-----|-----|-----|---------|-----|-----| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | - 1. Test drug. - 2. Manufacturer of the test drug. - 3. Actual amount of the test drug. - 4. Manufacturer of the drug about which the monograph is written. - 5. Actual amount of the drug about which the monograph is written. - 6. Description of the results of the test. - 7. Reference to the original source of the information. - 8. Designation of the compatibility (C) or incompatibility (I) of the test result according to conventional guidelines. #### Table 4. #### Y-Site Injection Compatibility (1:1 Mixture) #### Monograph drug name | Drug | Mfr | Conc | Mfr | Conc | Remarks | Ref | C/I | |------|-----|------|-----|------|---------|-----|-----| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | - 1. Test drug. - 2. Manufacturer of the test drug. - 3. Concentration of the test drug prior to mixing at the Y-site. - 4. Manufacturer of the drug about which the monograph is written. - 5. Concentration of the drug about which the monograph is written prior to mixing at the Y-site. - 6. Description of the results of the test. - 7. Reference to the original source of the information. - 8. Designation of the compatibility (C) or incompatibility (I) of the test result according to conventional guidelines. prefilling into syringes or in ambulatory pumps). Sorption and filtration characteristics of the drugs are provided as well when this information is available. The information is derived principally from the primary published research literature and is supplemented by the product labeling and the *AHFS Drug Information*. Compatibility Information—tabulates the results of published reports from primary research on the compatibility of the subject drug with infusion solutions and the other drugs. The various citations are listed alphabetically by solution or drug name; the information is completely cross-referenced among the monographs. Four types of tables are utilized to present the available information, depending on the kind of test being reported. The first type is for information on the compatibility of a drug in various infusion solutions and is depicted in Table 1. The second type of table presents information on two or more drugs in intravenous solutions and is shown in Table 2. The third type of table is used for tests of two or more drugs in syringes and is shown in Table 3. The fourth table format is used for reports of simulated or actual injection into Y-sites and manifolds of administration sets and is shown in Table 4. Many published articles, especially older ones, do not include all of the information necessary to complete the tables. However, the tables have been completed as fully as possible from the original articles. Additional Compatibility Information—provides additional information and discussions of compatibility presented largely in narrative form. In addition to primary published research, the information in this section is derived from reliable secondary sources. Examples of such sources include the product labeling and the AHFS Drug Information. For information from secondary sources, the research on which the information is based is not available for review. However, the sources are sufficiently reliable that inclusion in the Handbook is warranted. Other Information—contains any relevant auxiliary information concerning the drug which does not fall into the previous categories. #### The Listing of Concentration The concentrations of all admixtures in intravenous solutions in the tables have been indicated in terms of concentration per liter to facilitate comparison of the various studies. In some cases, this may result in amounts of the drug that are greater or lesser than those normally administered (as when the recommended dose is tested in 100 mL of vehicle), but the listings do accurately reflect the actual concentrations tested, expressed in standardized terms. For studies involving syringes, the amounts actually used are indicated. The volumes are also listed if indicated in the original article. For studies of actual or simulated Y-site injection of drugs, the concentrations are cited in terms of concentration per milliliter of each drug solution prior to mixing at the Y-site. Most published research reports have presented the drug concentrations in this manner, and the *Handbook* follows this convention. For those few published reports that presented the drug concentrations after mixing at the Y-site, the concentrations have been recalculated to be consistent with the more common presentation style to maintain the consistency of presentation in the *Handbook*. Note that the Y-Site Injection Compatibility table is designed with the assumption of a 1:1 mixture of the subject drug and infusion solution or admixture. For citations reporting other than a 1:1 mixture, the actual amounts tested are specifically noted. #### Designating Compatibility or Incompatibility Each summary of a published research report appearing in the Compatibility Information tables bears a compatibility indicator (C, I, or ?). A report receives a designation of C when the study results indicate that compatibility of the test samples existed under the test conditions. If the study determined an incompatibility existed under the test conditions, then an *I* designation is assigned for the *Handbook* entry for that study result. Specific standardized guidelines are used to assign these compatibility designations. The citation is designated as a report of compatibility when results of the original article indicated one or more of the following criteria were met: - Physical or visual compatibility of the combination was reported (no visible or electronically detected indication of particulate formation, haze, precipitation, color change, or gas evolution). - Stability of the components for at least 24 hours in an admixture under the specified conditions was reported (decomposition of 10% or less). - Stability of the components for the entire test period, although in some cases it was less than 24 hours, was reported (time periods less than 24 hours have been noted). The citation is designated as a report of incompatibility when the results of the original article indicated either or both of the following criteria were met: - A physical or visual incompatibility was reported (visible or electronically detected particulate formation, haze, precipitation, color change, or gas evolution). - Greater than 10% decomposition of one or more components in 24 hours or less under the specified conditions was reported (time periods of less than 24 hours have been noted in the table). Reports of test results that do not clearly fit into the compatibility or incompatibility definitions cannot be designated as either. These are indicated with a question mark. Although these criteria have become the conventional definitions of compatibility and incompatibility, the reader should recognize that the criteria may need to be tempered with professional judgment. Inflexible adherence to the compatibility designations should be avoided. Instead, they should be used as aids in the exercising of professional judgment. Therapeutic incompatibilities or other drug interactions are not within the scope of the *Handbook* and have not been included. #### Interpreting Compatibility Information in the Handbook As mentioned above, the body of information summarized in the *Handbook* is large and complicated. With the possible exception of a report of immediate gross precipitation, it usually takes some degree of thoughtful consideration and judgment to properly evaluate and appropriately act on the research results that are summarized in this book. Nowhere is the need for judgment more obvious than when apparently contradictory information appears in two or more published reports. The body of literature in drug—drug and drug—vehicle compatibility is replete with apparently contradictory results. Except for study results that have been documented later to be incorrect, the conflicting information has been included in the Handbook to provide practitioners with all of the information for their consideration. The conflicting information will be readily apparent to the reader because of the content of the Remarks section as well as the C, I, and ? designations following each citation. Many or most of the apparently conflicting citations may be the result of differing conditions or materials used in the studies. A variety of factors that can influence the compatibility and stability of drugs must be considered in evaluating such conflicting results, and absolute statements are often difficult or impossible to make. Differences in concentrations, buffering systems, preservatives, vehicles, temperatures, and order of mixing may all play a role. By reviewing a variety of reports, the user of the *Handbook* is better able to exercise professional judgment with regard to compatibility and stability. The reader must guard against misinterpretation of research results, which may lead to extensions of compatibility and stability that are inappropriate. As an example, a finding of precipitate formation two hours after two drugs are mixed does not imply nor should it be interpreted to mean that the combination is compatible until that time point, when a sudden precipitation occurs. Rather, it should be interpreted to mean that precipitation occurred at some point between mixing and the first observation point at two hours. Such a result would lead to a designation of incompatibility in the *Handbook*. Precipitation reports can be particularly troublesome for practitioners to deal with because of the variability of the time frames in which they may occur. Apart from combinations that repeatedly result in immediate precipitation, the formation of a precipitate can be unpredictable to some degree. Numerous examples of variable precipitation time frames can be found in the literature, including paclitaxel, etoposide, and sulfamethoxazole-trimethoprim in infusion solutions and calcium and phosphates precipitation in parenteral nutrition mixtures. Differing drug concentrations can also play a role in creating variability in results. A good example of this occurs with co-administered vancomycin hydrochloride and beta-lactam antibiotics. Users of the information in the Handbook must always be aware that a marginally incompatible combination might exhibit precipitation earlier or later than that reported in the literature. In many such cases, the precipitation is ultimately going to occur, it is just the timing that is in question. This is of particular importance for precipitate formation because of the potential for serious adverse clinical consequences, including death, which have occurred. Certainly, users of the Handbook information should always keep in mind and anticipate the possibility of precipitation and its clinical ramifications. Furthermore, all injections and infusions should be inspected for particulate matter and discoloration. If found, they should be discarded. In addition, many research reports cite test solutions or concentrations that may not be appropriate for clinical use. An example would be a report of a drug's stability in unsterile water. Although the *Handbook* summary will accurately reflect the test solutions and conditions that existed in a study, it is certainly inappropriate to misinterpret a stability report like this as being an authorization to use the product clinically. In such cases, the researchers may have used the clinically inappropriate diluent to evaluate the drug's stability for extrapolation to a more suitable vehicle that is similar, or they may not have recognized that the diluent is clinically unsuitable. In either event, it is incumbent on the practitioner in the clinical setting to use professional judgment to apply the information in an appropriate manner and recognize what is not acceptable clinically. Further, it should be noted that many of the citations designated incompatible are not absolute. While a particular admixture may incur more than 10% decomposition within 24 hours, the combination may be useful for a shorter time period. The concept of "utility time" or the time to 10% decomposition may be useful in these cases. Unfortunately, such information is often not available. Included in the Remarks columns of the tables are the amount of decomposition, the time period involved, and the temperature at which the study was conducted when this information is available. Users of the *Handbook* information should always keep in mind that the information in the *Handbook* must be used as a tool and a guide to the research that has been conducted and published. It is not a replacement for thoughtfully considered professional judgment. It falls to the practitioner to interpret the information in light of the clinical situation, including the patient's needs and status. What is certain is that relying solely on the C or I designation without the application of professional judgment is inappropriate. #### Limitations of the Literature In addition to conflicting information, many of the published articles have provided only partial evaluations, not looking at all aspects of a drug's stability and compatibility. This is not surprising considering the complexity, difficulty, and costs of conducting such research. There are, in fact, some articles that do provide evaluations of both physical stability/compatibility and chemical stability. But others are devoted only to physical issues, while others examine only chemical stability. Although a finding of precipitation, haze, or other physical effect may constitute an incompatibility (unless transient), the lack of such changes does not rule out chemical deterioration. In some cases, drugs initially designated as compatible because of a lack of visual change were later shown to undergo chemical decomposition. Similarly, the determination of chemical stability does not rule out the presence of unacceptable levels of particulates and/or turbidity in the combination. In a classic case, the drugs leucovorin calcium and fluorouracil were determined to be chemically stable for extended periods by stability-indicating HPLC assays in several studies, but years later, repeated episodes of filter clogging led to the discovery of unacceptable quantities of particulates in combinations of these drugs. The reader must always bear in mind these possibilities when only partial information is available. And, finally, contemporary practitioners have come to expect that the analytical methods used in reports on the chemical stability of drugs will be validated stability-indicating methods. However, many early studies used methods that were not demonstrated to be stability indicating. #### Literature Search for Updating the Handbook To gather the bulk of the published compatibility and stability information for updating the *Handbook*, a literature search is performed using the *International Pharmaceutical Abstracts* database. By using key terms (e.g., stability), a listing of candidate articles for inclusion in the *Handbook* is generated. From this list, truly relevant articles are selected. As a supplement to this automated literature searching, a manual search of the references of the articles is also conducted, and any articles not included previously are obtained. Although this labor-intensive approach yields a very high percentage of the relevant articles published in the world's literature, it is not 100% inclusive. Occasionally, users of the *Handbook* come across articles that were overlooked. The author encourages anyone who finds an article that has been missed to bring it to his attention. #### Beyond-Use Dating for Compounded Sterile Preparations For an overview of Beyond-Use Dating for Compounded Sterile Preparations, see Appendix II. #### Reference 1. *The United States Pharmacopeia*, 31st ed. Rockville, MD: United States Pharmacopeial Convention; 2008. #### Solution Abbreviations AA Amino acids (percentage specified) D Dextrose solution (percentage unspecified) D5LR Dextrose 5% in Ringer's injection, lactated | D5R | Dextrose 5% in Ringer's injection | AW | Asta Werke | |------------------|---|-----|---| | D-S | Dextrose–saline combinations | AY | Ayerst | | D2.5½S | Dextrose 2.5% in sodium chloride 0.45% | BA | Baxter | | D2.5S | Dextrose 2.5% in sodium chloride 0.9% | BB | B & B Pharmaceuticals | | D51/4S | Dextrose 5% in sodium chloride 0.225% | BAN | Banyu Pharmaceuticals | | D51/2S | Dextrose 5% in sodium chloride 0.45% | BAY | Bayer | | D5S | Dextrose 5% in sodium chloride 0.45% Dextrose 5% in sodium chloride 0.9% | BC | Bencard | | | | | Beecham | | D10S | Dextrose 10% in sodium chloride 0.9% | BE | | | D5W | Dextrose 5% | BED | Bedford | | D10W | Dextrose 10% | BEL | R. Bellon | | DXN-S | Dextran 6% in sodium chloride 0.9% | BFM | Bieffe Medital | | IDCM | Ionosol DCM | BI | Boehringer Ingelheim | | IG | Ionosol G | BK | Berk | | IM | Isolyte M | BKN | Baker Norton | | IP | Isolyte P | BM | Boehringer Mannheim | | IS | Invert sugar | BMS | Bristol-Myers Squibb | | LR | Ringer's injection, lactated | BN | Breon | | NM | Normosol M | BP | British Pharmacopoeia ^a | | NR | Normosol R | BPC | British Pharmaceutical Codex ^a | | NS | Sodium chloride 0.9% | BR | Bristol | | PH | Protein hydrolysate | BRD | Bracco Diagnostics | | R | Ringer's injections | BRN | B. Braun | | REF | Refrigeration | BRT | Britianna | | RT | Room temperature | BT | Boots | | S | Saline solution (percentage unspecified) | BTK | Biotika | | 1/2S | Sodium chloride 0.45% | BV | Ben Venue | | SL | Sodium lactate 1/6 M | BW | Burroughs Wellcome | | TPN | Total parenteral nutrition solution | BX | Berlex | | W | Sterile water for injection | BY | Bayer | | | Sterrie Water for Injection | CA | Calmic | | | | CE | Carlo Erba | | Manufacturer and | Compendium Abbreviations | CEN | Centocor | | | | CER | Cerenex | | AB | Abbott | CET | Cetus | | ABX | Abraxis | CH | | | ACC | American Critical Care | CHI | Lab. Choay Societe Anonyme
Chiron | | AD | Adria | | | | AGT | Aguettant | CIS | CIS US | | AH | Allen & Hanburys | CL | Ciba | | AHP | Ascot Hospital Pharmaceuticals | CL | Clintec | | ALP | Alpharma | CN | Connaught | | ALT | Altana Pharma | CNF | Centrafarm | | ALZ | Alza | CO | Cole | | AM | ASTA Medica | CP | Continental Pharma | | AMG | Amgen | CPP | CP Pharmaceuticals | | AMR | American Regent | CR | Critikon | | AND | Andromaco | CSL | CSL Ltd. | | ANT | Antigen | CTI | Cell Therapeutics Inc. | | AP | Asta-Pharma | CU | Cutter | | APC | Apothecon | CUB | Cubist | | APO | Apotex | CUR | Curomed | | APP | American Pharmaceutical Partners | CY | Cyanamid | | AQ | American Quinine | DAK | Dakota | | AR | Armour | DB | David Bull Laboratories | | ARC | American Red Cross | DCC | Dupont Critical Care | | AS | Arnar-Stone | DI | Dista | | ASC | Ascot | DIA | Diamant | | ASP | Astellas Pharma | DM | Dome | | AST | Astra | DME | Dupont Merck Pharma | | ASZ | AstraZeneca | DMX | Dumex | | AT | Alpha Therapeutic | DRA | Dr. Rentschler Arzneimittel | | AVE | Aventis | DU | DuPont | | | 11.01110 | | Dur one | | DUR | Dura | KY | Kyowa | |-----|------------------------|-----|---------------------------------| | DW | Delta West | LA | Lagap | | EA | Eaton | LE | Lederle | | EBE | Ebewe | LEM | Lemmon | | ELN | Elan | LEO | Leo Laboratories | | EN | Endo | LI | Lilly | | ENZ | Enzon | LME | Laboratoire Meram | | ES | Elkins-Sinn | LY | Lyphomed | | ESL | ESI Lederle | LZ | Labaz Laboratories | | ESP | ESP Pharma | MA | Mallinckrodt | | EST | Esteve | MAC | Maco Pharma | | EV | Evans | MAR | Marsam | | EX | Essex | MAY | Mayne Pharma | | FA | Farmitalia | MB | May & Baker | | FAU | Faulding | MDI | Medimmune | | FC | Frosst & Cie | ME | Merck | | FED | Federa | MG | McGaw | | FER | | MGI | MGI Pharma | | FI | Ferring
Fisons | MI | Miles | | FRE | Fresenius | MJ | Mead Johnson | | | | MN | | | FUJ | Fujisawa | | McNeil | | GEI | Geistich Pharma | MMD | Marion Merrell Dow | | GEM | Geneva-Marsam | MMT | Meridian Medical Technologies | | GEN | Genentech | MRD | Merrill-Dow | | GG | Geigy | MRN | Merrill-National | | GIL | Gilead | MSD | Merck Sharp & Dohme | | GIU | Giulini | MUN | Mundi Pharma | | GL | Glaxo | MY | Maney | | GNS | Gensia-Sicor | MYR | Mayrhofer Pharmazeutika | | GO | Goedecke | NA | National | | GRI | Grifols | NAB | Nabi | | GRP | Gruppo | NAP | NAPP Pharmaceuticals | | GRU | Grunenthal | NCI | National Cancer Institute | | GSK | GlaxoSmithKline | NE | Norwich-Eaton | | GVA | Geneva | NF | National Formulary ^a | | GW | Glaxo Wellcome | NO | Nordic | | HAE | Haemonetics | NOP | Novopharm | | HC | Hillcross | NOV | Novo Nordisk | | HMR | Hoechst Marion Roussel | NVA | Novartis | | НО | Hoechst-Roussel | NVP | Nova Plus | | HOS | Hospira | NYC | Nycomed | | HR | Horner | OHM | Ohmeda | | HY | Hyland | OM | Omega | | ICI | ICI Pharmaceuticals | OMJ | OMJ Pharmaceuticals | | ICN | ICN Pharmaceuticals | OMN | Ortho-McNeil | | IMM | Immunex | ON | Orion | | IMS | IMS Ltd. | OR | Organon | | IN | Intra | ORT | Ortho | | INT | Intermune | PAD | Paddock | | IV | Ives | PB | Pohl-Boskamp | | IVX | Ivex | PD | Parke-Davis | | IX | Invenex | PE | Pentagone | | JC | Janssen-Cilag | PF | Pfizer | | JJ | Johnson & Johnson | PFM | Pfrimmer | | JN | Janssen | PH | Pharmacia | | JP | Jones Pharma | PHC | Pharmachemie | | KA | Kabi | PHS | Pharmascience | | KEY | Key Pharmaceuticals | PHT | Pharma-Tek | | KN | Knoll | PHU | Pharmacia & Upjohn | | KP | Kabi Pharmacia | PHX | Phoenix | | KV | Kabi-Vitrum | PO | Poulenc | | | | | | | PR | Pasadena Research | SW | Sanofi Winthrop | |-----|----------------------|-------------------|--| | PRK | Parkfields | SX | Sabex | | PX | Pharmax | SY | Syntex | | QLM | Qualimed Labs | SYN | Synergen | | QU | Quad | SYO | Synthelabo | | RB | Robins | SZ | Sandoz | | RC | Roche | TAK | Takeda | | RI | Riker | TAP | TAP Holdings | | RKB | Reckitt & Benckhiser | TAY | Taylor | | RKC | Reckitt & Colman | TE | Teva | | ROR | Rorer | TEC | Teclapharm | | ROX | Roxane | TL | Tillotts | | RP | Rhone-Poulenc | TMC | The Medicines Company | | RPR | Rhone-Poulenc Rorer | TO | Torigian | | RR | Roerig | TR | Travenol | | RS | Roussel | UP | Upjohn | | RU | Rugby | USB | US Bioscience | | SA | Sankyo | USP | United States Pharmacopeiea ^a | | SAA | Sanofi Aventis | USV | USV Pharmaceuticals | | SAN | Sanofi | UT | United Therapeutics | | SC | Schering | VHA | VHA Plus | | SCI | Scios | VI | Vitarine | | SCN | Schein | VT | Vitrum | | SCS | SCS Pharmaceuticals | WAS | Wasserman | | SE | Searle | WAT | Watson | | SEQ | Sequus | WAY | Wyeth-Ayerst | | SER | Servier | WB | Winthrop-Breon | | SGS | SangStat | WC | Warner-Chilcott | | SIC | Sicor | WED | Weddel | | SKB | SmithKline Beecham | WEL | Wellcome | | SKF | Smith Kline & French | WI | Winthrop | | SM | Smith | WL | Warner Lambert | | SN | Smith + Nephew | WOC | Wockhardt | | SO | SoloPak | WY | Wyeth | | SQ | Squibb | XGN | X-Gen | | SS | Sanofi-Synthelabo | YAM | Yamanouchi | | ST | Sterilab | ZEN | Zeneca | | STP | | ZLB | ZLB Biopharma | | STR | Sterop | ZNS | Zeneus Pharma | | STS | Sterling Storie | 21.10 | Zonodo I narma | | | Steris | | compendium does not indicate the specific | | STU | Stuart | 5 1 | act, it does help to indicate the formulation that was | | SV | Savage | used in the test. | | ### CONTENTS | Acknowledgments | |--| | Preface IX | | How to Use the Handbook XI | | Commercial Drug Monographs | | Appendix I: Parenteral Nutrition Formulas | | Appendix II: Beyond-Use Dating of Compounded | | Sterile Preparations | | References | | Index | | COMMERCIAL [| DRUG 1 | Monogr | APHS | |--------------|--------|--------|------| |