

Samuel! L. Marateck

The Courant Institute of Mathematical Sciences
New York University

ACADEMIC PRESS NEW YORK SAN FRANCISCO LONDON

A Subsidiary of Harcourt Brace Jovanovich, Publishers

CoPYRIGHT © 1975, BY ACADEMIC PRESS, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1

Library of Congress Cataloging in Publication Data

Marateck, Samuel.
BASIC.

Bibliography: p.

Includes index.

1. Basic (Computer program language) I. Title.
QA76.73.B3M37 001.6'424 74-27787
ISBN 0-12-470450-6

PRINTED IN THE UNITED STATES OF AMERICA

BASIG

To my parents Harold and Rita

Preface

This book is an outgrowth of notes the author uses in a course in BASIC that he teaches
to undergraduates at New York University. Its purpose is to teach the student how to program
using the BASIC language, and it has been written for students who have no prior knowledge
of computers or programming. In order to make the book easier for such students to under-
stand, the author in most cases has introduced only one new programming concept per pro-
gram. Thus, many of the programs in the book are first written as a series of smaller programs,
each of which serves as a step in understanding the entire larger program. The author has found
this to be an effective teaching technique.

Simple programs have been used to illustrate the various programming techniques dis-
cussed in this book. These programs are the solutions to problems drawn from various disci-
plines, and they are of a nature such that students, whatever their major field, should under-
stand them without difficulty.

The author has also included in the book examples of common programming mistakes
made by beginning students when they are not explicit enough in translating their thoughts
into programming instructions. The author has found this type of example to be another effec-
tive teaching technique. Now a word on why BASIC is the ideal language to use in an intro-
ductory course.

The vast majority of BASIC programs are typed and run in an interactive environment;
that is, the student and computer can interact with each other while the student is typing and
running his program. For instance, the computer informs the student that he has made an error
almost as soon as he has made it. The student can then correct his mistakes and rerun his pro-
gram without delay. This immediate feedback enables students to learn the elements of pro-
gramming quite easily. In order to make this task even easier, the author has designed the
book in the following way: the right-hand pages contain pictorial material on programming,
which should be easily digestible; this is described in detail in “To the Reader” (page xi). The
left-hand pages contain the text. You will see that strict adherence to this design has resulted
in a number of partially filled pages. It has been the author’s experience that, in many cases,
students who have sat down at the teletypewriter without having previously gone to class, and
have used only the right-hand pages of preliminary versions of this book, have been able to
write programs in their first session at the teletypewriter. In order for the student to understand
all the ramifications of the programming techniques described he should also read the text on
the left-hand facing page. We now make some remarks about BASIC itself.

The BASIC language was developed under the direction of J. Kemeny and T. Kurtz at
Dartmouth College in the 1960s. Since then, the various manufacturers of computers in
developing their own versions of BASIC have added programming instructions to the original
Dartmouth version. Fortunately, the significant additions incorporated in these various versions

X Preface

of BASIC for the most part have been quite similar. Therefore, the reader should encounter
no difficulty in running on any computer that supports BASIC the overwhelming majority of
the programs presented in this book. This includes the programs-involving matrix operations.

The format of the matrix statements is such that one general form can be used on all com-
puters. However, depending on the version of BASIC you are using, you may have options on
how and where in the program you can dimension matrices other than in a DIM statement.
Therefore, in order to enable you to run the programs that involve matrices on any computer,
we have written these programs without using any of the available dimension options. How-
ever, we have described all the possible dimension options in a table that appears at the end
of the chapter on matrices.

Perhaps the only way that your interaction with the computer may differ somewhat from
what we describe here is how you instruct the computer to process your program. We have
described the processing instructions—called system commands—that are in most general
use, i.e., those used in Dartmouth BASIC [GE, DEC(PDP), CDC, UNIVAC, and RTB];
however, we have detailed in the footnotes how the system on another popular system, the
one used on the Hewlett-Packard 2000 series, differs from what we describe in the text. In
the other chapters we have described in the footnotes how some aspects of the instructions
used on other systems—especially the Hewlett-Packard but also the XDS Sigma series, IBM
360, IBM 370, and CDC 6600—differ from what we describe in the text.

The chapters in this book, with the exception of the one on system commands (Chapter 3),
should be read in sequential order. The reader may want to defer reading Chapter 3 until some
later time. Chapter 3 was placed toward the beginning of the book because it was felt that the
knowledge of system commands would enable the reader to write and correct programs more
easily and effectively.

The programs shown in this book were checked out and run on one or more of the follow-
ing computers: Hewlett-Packard 2000C, CDC 6600, XDS Sigma 7, IBM 370, and UNIVAC
1108.

It is a pleasure to thank Professor J. T. Schwartz and Professor Max Goldstein for their
kindness to me while 1 was writing this book, and Jeffrey Akner and Martin Mathiot for
granting me free time on their machines.

To the Reader

This book has been written with the premise that it is at times easier to learn a subject
from pictorial representations supported by text than from text supported by pictorial repre-
sentations. With this in mind, beginning with Chapter 2 we have used a double-page format
for our presentation. On the left-hand page (we call it the text page) appears the text, and
on the right-hand page (we call it the picture page) appears the pictorial representation, con-
sisting mostly of programs and tables.

Each picture page was written to be as self-contained as possible, so that the reader, if
he so desires, may read that page first and absorb the essence of the contents of the entire
double page before going on to read the text. The text page consists of a very thorough dis-
cussion of the programming techniques presented on the picture page. It refers to parts of
the programs and tables on the picture page; when reference is made on the text page to a
given line of print on the picture page, that line—whenever it is feasible to do so—is repro-
duced in the text to promote readability. Students who have a previous background in pro-
gramming languages and others who understand the picture page completely may find that
in some chapters they can skip the text (left-hand) pages and concentrate on the picture
pages.

The following techniques are used as aids in making the picture page self-contained.

1. As many as possible of the ideas discussed in the text are illustrated in the programs
and tables. The captions beneath these capsulate much of what is said in the text.

2. Words underlined in the captions describe lines underlined in the figures. To illustrate
this, Fig. 2.1a is reproduced below.

10 LET A=21.2
20 LET B=30.1
30 END

Figure 2.1a. A simple BASIC program illustra-
ting the use of the assignment statement.

The statements 10 LET A = 21.2 and 20 LET B = 30.1 are underlined to show that

they are described by the words underlined in the caption. Thus they are both assignment
statements.

xi

xii To the Reader

3. To the right of most programs appears a table that describes what effect certain lines
in the program have on the computer’s memory. For instance, the following table describes
the effect that the line of programming to its left has on the memory:

Line no. A

10 LET A=21.2 10 21.2

We see from the table that line number 10 of the program causes the number 21.2 to be
associated with A in the computer’s memory. The line-by-line analysis afforded by these tables
should aid the reader in understanding the pragram.

Contents

Preface
To the Reader

1

Introduction to Computers and Programming

1.1
1.2
1.3
1.4
1.5

2

General Remarks

The Teletypewriter
Solving a Problem
Time-Sharing

Getting on the Computer

Introduction to BASIC

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3

General Remarks

The Assignment and PRINT Statements; RUN; Add and Multiply
The Naming of Variables

The Computer’s Response to Grammatical Errors

Editing BASIC Programs Using Time-Sharing; LIST and SCRATCH
More on the PRINT Instruction

Performing Calculations in BASIC

How Commas and Semicolons Affect the Printed Results

Using Undefined Variables in a Program

Writing and Reading Paper Tape

Problems

The Various System Commands and Their Uses

3.1

Systems Commands
Problems

Vi

ix
xi

0O N -

10
10
22
24
26
34
40
50
56
58
60

62
74

4

READ, DATA, GO TO, IF, and INPUT Statements

4.1
4.2
43

4.4

S

READ and DATA Statements
The GO TO Statement

The IF Statement; Relational Operators; Trailer; Multiplicative

Accumulators
The INPUT Statement
Problems

The FOR-NEXT Loop

5.1
5.2
53

6

Numbers

The FOR-NEXT Loop
The RESTORE Statement
Problems

Strings and Library Functions

6.1
6.2
6.3

6.4

7

The STOP, Multiple Assignment, and ON-GO TO Statements

Strings
Comparing Strings

Library Functions: SQR, INT, ABS, SGN, EXP, LOG, SIN, COS,

TAN, RND
TAB(X) and Graphical Displays
Problems

and Subscripted Variables

7.1
7.2
7.3
7.4

The STOP Statement
The Multiple Assignment Statement
The ON-GO TO Statement

Contents

Singly Dimensioned Variables; DIM Statement; Plotting Grade Distributions

Problems

vii

76
100

120
140
150

154
158
192
196

200
210

214
226
238

240
242
244
252
274

viii Contents

8

Subscripted String Variables, Subroutines and
User-Defined Functions

8.1 Subscripted String Variables

8.2 More on Comparing Strings

8.3 Substrings

8.4 Subroutines

8.5 User-Defined Functions

8.6 Monte Carlo Techniques: Simulating a Shuffled Deck of Cards
Problems

9

Doubly Subscripted Variables and Matrices

9.1 Doubly Subscripted Variables; Chi-Squared
9.2 MATPRINT and the ZER Matrix
9.3 MAT READ, MAT Multiplication, Inverse, Transpose, Addition and
Subtraction
Problems

10

PRINT USING and Files

10.1 Image Printing: Using the PRINT USING Statement
10.2 Data Files

Problems

Subject Index

276
280
290
294
302
312
320

324
332
334

366

370
382
398

400

1

Introduction to Computers
and Programming

1.1. General Remarks

Most of you reading this book have had very little previous experience with computers.
You therefore may think of a computer as an electronic brain that makes important decisions
for astronauts or predicts the outcome of political elections. A computer is certainly this, and
more. However, it is not a machine that does things of its own volition, independent of what
man orders it to do. At the present stage of their development, computers only follow the
instructions that people give them. These instructions are called programs, and the people
who write programs are called programmers.

The form that these instructions take depends on the programming language the pro-
grammer uses. Some of these languages are hard to learn whereas others are relatively easy.
It is the purpose of this book to teach you how to write programs in the language that is the
easiest to learn. It is called BASIC, an acronym for Beginner’s All-purpose Symbolic Instruc-
tion Code. First, a few comments on computers and programming languages in general.

One way of picturing a computer is as a maze of on—off electrical switches connected
by wires. Thus, you might imagine that, if a programmer wished to instruct a computer to do
something, he would have to feed it a program composed of a series of on—off types of instruc-
tions. As a matter of fact, the first programs written were like this. The type of language that
uses this form of instruction is called “machine language,” and it is, to a limited extent, still
used today by certain categories of expert programmers. Writing programs in machine
language is very tedious. For this reason, computer languages closer in form to English and
algebra have been devised. The easiest of these to learn is BASIC.

A program written in BASIC cannot be directly understood by the computer; it must
first be translated into machine language. A special program, called a compiler, which is
already present in the computer, does this. BASIC has grammatical rules that must be fol-
lowed by the programmer. These rules are similar to those in English which govern the
sequence of words in a sentence, punctuation, and spelling—we shall learn these rules in

2 Introduction to Computers and Programming

later chapters. Before the compiler translates your program, it checks whether you have
written your program instructions according to the grammatical rules. If you make grammati-
cal errors in writing an instruction, don’t worry; the compiler has been written so that it will
inform you of these. You must correct the errors before the compiler will translate your
program. Do not be surprised if your programs are full of errors—it is a rare person who
can write a program without making them.

Now, we give a more detailed view of the computer. Essentially, the computer consists of
an input unit, a memory unit, an arithmetic unit, an output unit, and a control unit. We com-
municate our program to the computer through the input unit. All the mathematics and
decisions in the program are done in the arithmetic unit. Numbers are stored in the memory,
which consists of thousands of memory locations. We shall speak about these memory loca-
tions in more detail later in this chapter. The computer communicates the results of our pro-
gram to us through the output unit. Finally the control unit directs the activities of the other
four units.

The word hardware is used to describe the physical components of the computer, such
as these units, whereas the word software is used to describe the programs. We shall use the
word system to describe the programs, such as the compiler, that process the programs you
write.

In general, the system used on one make of computer will differ somewhat from the
system used on another make. In fact, it is possible to implement more than one system on a
given computer. Therefore, when we describe the differences—most of them minor—that
one may encounter when running the same BASIC program on different computers, we shall,
for the most part, attribute these differences to the system employed.

We now describe that piece of hardware which, for most of you, will be the only part
of the computer you will ever encounter: the teletypewriter.

1.2. The Teletypewriter

The teletypewriter is both an input and an output device. Basically, it is a typewriter
that is electrically connected to the rest of the computer. From now on we will follow the
common practice of using the word computer to refer to the rest of the computer as
opposed to the teletypewriter. The programmer types his program on the teletypewriter, and
the computer types the results on it. The part of the teletypewriter that comes into actual con-
tact with the teletypewriter paper while doing the printing is called the printing head. In
Fig. 1.1 we show a typical teletypewriter.

Introduction to Computers and Programming

Figure 1.1. Teletype Model 33 unit. (Courtesy of Teletype Corporation.)

4 Introduction to Computers and Programming

OOOOOO®OHOOOOO®
GHEWOEOOOVOO@OEE
WO@O®WOOOOEEE
L@@@@@@)@@@
(

Keyboard

Figure 1.2. Teletypewriter keyboard. (Courtesy of Teletype Corporation.)

The teletypewriter keyboard—the one shown in Fig. 1.2 is for the Teletype Corporation
teletypewriter—differs somewhat from the typewriter keyboard. Although you can type lower-
case letters—for example, a—on a typewriter, you cannot type them on the teletypewriter;
when you depress the teletypewriter key marked A, a capital letter A appears on the teletype-
writer paper. If you simultaneously depress the SHIFT key and one of the keys on which
there is both a letter of the alphabet and above it a symbol—for example,

®

the 7, but not a capital N, will be printed. On the other hand, if you try to depress simul-
taneously the SHIFT key and one of the keys on which there is both a letter and above it a

group of letters—for example,

nothing will be typed. These groups of letters, in almost all cases, are not used to communi-
cate with the computer. If they are used, they must be depressed simultaneously with the
CTRL key.

Introduction to Computers and Programming 5

We now briefly describe the function of the other keys. Some of these functions will be
described in greater detail in the appropriate places later in the book.

LINE FEED: This key advances the paper in the teletypewriter one line.

RETURN: This key returns the typing head to the beginning of the next line, signaling
the computer that you have finished typing a line. The information on that line is then
recorded by the computer.

RUB OUT: In some systems, if this key is depressed before RETURN, it deletes the
line just typed so that the line is not recorded by the computer. It is also used in punching
a paper tape.

BREAK: This key is used on some systems to stop your program or the automatic retyp-
ing of your program.

ALT MODE or, on some teletypewriters, ESC: If this key is depressed before
RETURN, it deletes the line just typed so that the line is not recorded by the computer.

CTRL: In some systems, when this key is depressed simultaneously with some other
key, it has the same effect as BREAK.

REPT: This key, when depressed simultaneously with another key, causes the action of
that key to be repeated.

HERE IS: This key is used in the process of punching a paper tape to produce holes in
the tape for a leader or trailer.

The operation of the remaining keys is the same as on a typewriter. If the key is
depressed, the lower symbol appearing on the key is typed. If the key is depressed together
with the SHIFT key, the upper symbol is typed. We shall explain the function of the symbols
that are neither numeric nor alphabetic as we encounter them in the book. For the remainder
of the book we shall refer to the symbols on the keyboard—except for the groups of letters—
as characters.

