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PREFACE TO THE THIRD EDITION

In the last decade following the publication of the second edition of this book the subject
of random matrices found applications in many new fields of knowledge. In heteroge-
neous conductors (mesoscopic systems) where the passage of electric current may be
studied by transfer matrices, quantum chromo dynamics characterized by some Dirac
operator, quantum gravity modeled by some random triangulation of surfaces, traffic
and communication networks, zeta function and L-series in number theory, even stock
movements in financial markets, wherever imprecise matrices occurred, people dreamed
of random matrices.

Some new analytical results were also added to the random matrix theory. The note-
worthy of them being, the awareness that certain Fredholm determinants satisfy second
order nonlinear differential equations, power series expansion of spacing functions, a
compact expression (one single determinant) of the general correlation function for the
case of hermitian matrices coupled in a chain, probability densities of random determi-
nants, and relation to random permutations. Consequently, a revision of this book was
felt necessary, though in the mean time four new books (Girko, 1990; Effetof, 1997,
Katz and Sarnak, 1999; Deift, 2000), two long review articles (di Francesco et al., 1995;
Guhr et al., 1998) and a special issue of J. Phys. A (2003) have appeared. The subject
matter of them is either complimentary or disjoint. Apart from them the introductory
article by C.E. Porter in his 1965 collection of reprints remains instructive even today.

In this new edition most chapters remain almost unaltered though some of them
change places. Chapter 5 is new explaining the basic tricks of the trade, how to deal
with integrals containing the product of differences [ ] |x; — x| raised to the power 1,
2 or 4. Old Chapters 5 to 11 shift by one place to become Chapters 6 to 12, while
Chapter 12 becomes 18. In Chapter 15 two new sections dealing with real random ma-
trices and the probability density of determinants are added. Chapters 20 to 27 are new.
Among the appendices some have changed places or were regrouped, while 16, 37, 38

Xiii



xiv Preface to the Third Edition

and 42 to 54 are new. One major and some minor errors have been corrected. It is really
surprising how such a major error could have creeped in and escaped detection by so
many experts reading it. (Cf. lines 2, 3 after Eq. (1.8.15) and line 6 after Eq. (1.8.16):
h(d) is not the number of different quadratic forms as presented, but is the number of
different primitive inequivalent quadratic forms.) Not to hinder the fluidity of reading
the original source of the material presented is rarely indicated in the text. This is done
in the “notes” at the end.

While preparing this new edition I remembered the comment of B. Suderland that
from the presentation point of view he preferred the first edition rather than the second.
As usual, I had free access to the published and unpublished works of my teachers,
colleagues and friends FJ. Dyson, M. Gaudin, H. Widom, C.A. Tracy, A.M. Odlyzko,
B. Poonen, H.S. Wilf, A. Edelman, B. Dietz, S. Ghosh, B. Eynard, R.A. Askey and many
others. G. Mahoux kindly wrote Appendix A.16. M. Gingold helped me in locating
some references and L. Bervas taught me how to use a computer to incorporate a figure
as a .ps file in the TgX files of the text. G. Cicuta, O. Bohigas, B. Dietz, M. Gaudin,
S. Ghosh, P.B. Kahn, G. Mahoux, J.-M. Normand, N.C. Snaith, P. Sarnak, H. Widom
and R. Conte read portions of the manuscript and made critical comments thus helping
me to avoid errors, inaccuracies and even some blunders. O. Bohigas kindly supplied
me with a list of minor errors of references in the figures of Chapter 16. It is my pleasant
duty to thank all of them. However, the responsibility of any remaining errors is entirely
mine. Hopefully this new edition is free of serious errors and it is self-contained to be
accessible to any diligent reader.

February, 2004
Saclay, France Madan Lal MEHTA



PREFACE TO THE SECOND EDITION

The contemporary textbooks on classical or quantum mechanics deal with systems gov-
erned by differential equations which are simple enough to be solved in closed terms
(or eventually perturbatively). Hence the entire past and future of such systems can be
deduced from a knowledge of their present state (initial conditions). Moreover, these
solutions are stable in the sense that small changes in the initial conditions result in
small changes in their time evolution. Such systems are called integrable. Physicists
and mathematicians now realize that most of the systems in nature are not integrable.
The forces and interactions are so complicated that either we can not write the corre-
sponding differential equation, or when we can, the whole situation is unstable; a small
change in the initial conditions produces a large difference in the final outcome. They
are called chaotic. The relation of chaotic to integrable systems is something like that
of transcendental to rational numbers.

For chaotic systems it is meaningless to calculate the future evolution starting from
an exactly given present state, because a small error or change at the beginning will
make the whole computation useless. One should rather try to determine the statistical
properties of such systems.

The theory of random matrices makes the hypothesis that the characteristic energies
of chaotic systems behave locally as if they were the eigenvalues of a matrix with ran-
domly distributed elements. Random matrices were first encountered in mathematical
statistics by Hsu, Wishart and others in the 1930s, but an intensive study of their prop-
erties in connection with nuclear physics began only with the work of Wigner in the
1950s. In 1965 C.E. Porter edited a reprint volume of all important papers on the sub-
ject, with a critical and detailed introduction which even today is very instructive. The
first edition of the present book appeared in 1967. During the last two decades many
new results have been discovered, and a larger number of physicists and mathemati-
cians got interested in the subject owing to various possible applications. Consequently
it was felt that this book has to be revised even though a nice review article by Brody et
al. has appeared in the mean time (Rev. Mod. Phys., 1981).

XV



xvi Preface to the Second Edition

Among the important new results one notes the theory of matrices with quaternion
elements which serves to compute some multiple integrals, the evaluation of n-point
spacing probabilities, the derivation of the asymptotic behaviour of nearest neighbor
spacings, the computation of a few hundred millions of zeros of the Riemann zeta func-
tion and the analysis of their statistical properties, the rediscovery of Selberg’s 1944
paper giving rise to hundreds of recent publications, the use of the diffusion equation to
evaluate an integral over the unitary group thus allowing the analysis of non-invariant
Gaussian ensembles and the numerical investigation of various systems with determin-
istic chaos.

After a brief survey of the symmetry requirements the Gaussian ensembles of ran-
dom Hermitian matrices are introduced in Chapter 2. In Chapter 3 the joint probability
density of the eigenvalues of such matrices is derived. In Chapter 5 we give a detailed
treatment of the simplest of the matrix ensembles, the Gaussian unitary one, deriving
the n-point correlation functions and the r-point spacing probabilities. Here we ex-
plain how the Fredholm theory of integral equations can be used to derive the limits of
large determinants. In Chapter 6 we study the Gaussian orthogonal ensemble which in
most cases is appropriate for applications but is mathematically more complicated. Here
we introduce matrices with quaternion elements and their determinants as well as the
method of integration over alternate variables. The short Chapter 8 introduces a Brown-
ian motion model of Gaussian Hermitian matrices. Chapters 9, 10 and 11 deal with
ensembles of unitary random matrices, the mathematical methods being the same as in
Chapters 5 and 6. In Chapter 12 we derive the asymptotic series for the nearest neigh-
bor spacing probability. In Chapter 14 we study a non-invariant Gaussian Hermitian
ensemble, deriving its n-point correlation and cluster functions; it is a good example of
the use of mathematical tools developed in Chapters 5 and 6. Chapter 16 describes a
number of statistical quantities useful for the analysis of experimental data. Chapter 17
gives a detailed account of Selberg’s integral and of its consequences. Other chapters
deal with questions or ensembles less important either for applications or for the math-
ematical methods used. Numerous appendices treat secondary mathematical questions,
list power series expansions and numerical tables of various functions useful in appli-
cations.

The methods explained in Chapters 5 and 6 are basic, they are necessary to understand
most of the material presented here. However, Chapter 17 is independent. Chapter 12
is the most difficult one, since it uses results from the asymptotic analysis of differ-
ential equations, Toeplitz determinants and the inverse scattering theory, for which in
spite of a few nice references we are unaware of a royal road. The rest of the mater-
ial is self-contained and hopefully quite accessible to any diligent reader with modest
mathematical background.

Contrary to the general tendency these days, this book contains no exercises.

October, 1990 M.L. MEHTA
Saclay, France



PREFACE TO THE FIRST EDITION

Though random matrices were first encountered in mathematical statistics by Hsu,
Wishart, and others, intensive study of their properties in connection with nuclear
physics began with the work of Wigner in the 1950s. Much material has accumulated
since then, and it was felt that it should be collected. A reprint volume to satisfy this
need had been edited by C.E. Porter with a critical introduction (see References); never-
theless, the feeling was that a book containing a coherent treatment of the subject would
be welcome.

We make the assumption that the local statistical behavior of the energy levels of
a sufficiently complicated system is simulated by that of the eigenvalues of a random
matrix. Chapter 1 is a rapid survey of our understanding of nuclear spectra from this
point of view. The discussion is rather general, in sharp contrast to the precise problems
treated in the rest of the book. In Chapter 2 an analysis of the usual symmetries that
quantum system might possess is carried out, and the joint probability density func-
tion for the various matrix elements of the Hamiltonian is derived as a consequence.
The transition from matrix elements to eigenvalues is made in Chapter 3, and the stan-
dard arguments of classical statistical mechanics are applied in Chapter 4 to derive the
eigenvalue density. An unproven conjecture is also stated. In Chapter 5 the method of
integration over alternate variables is presented, and an application of the Fredholm the-
ory of integral equations is made to the problem of eigenvalue spacings. The methods
developed in Chapter 5 are basic to an understanding of most of the remaining chapters.
Chapter 6 deals with the correlations and spacings for less useful cases. A Brownian
motion model is described in Chapter 7. Chapters 8 to 11 treat circular ensembles;
Chapters 8 to 10 repeat calculations analogous to those of Chapter 4 to 7. The inte-
gration method discussed in Chapter 11 originated with Wigner and is being published
here for the first time. The theory of non-Hermitian random matrices, though not ap-
plicable to any physical problems, is a fascinating subject and must be studied for its

xvii
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own sake. In this direction an impressive effort by Ginibre is described in Chapter 12.
For the Gaussian ensembles the level density in regions where it is very low is dis-
cussed in Chapter 13. The investigations of Chapter 16 and Appendices A.29 and A.30
were recently carried out in collaboration with Professor Wigner at Princeton Univer-
sity. Chapters 14, 15, and 17 treat a number of other topics. Most of the material in the
appendices is either well known or was published elsewhere and is collected here for
ready reference. It was surprisingly difficult to obtain the proof contained in Appen-
dix A.21, while Appendices A.29, A.30 and A.31 are new.

October, 1967 M.L. MEHTA
Saclay, France
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