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Preface

The MAX phases are a fascinating class of layered solids that are relatively young.
Interest in these 50+ phases has increased recently because they combine an
unusual and very often unique combination of properties. For example, some
are stiff and light and yet are readily machinable. Some are oxidation and creep
resistant while also being metallic conductors and exceptionally thermal shock
resistant. At this time, there are a number of good review articles on the MAX
phases. However, the articles either focus on a few MAX phases, most notably
Ti,SiC,, Ti,AlC,, Ti,AlC, and Cr,AlC, or try to tackle the entire subject in which
much per force has to be glossed over. Said otherwise, there is no comprehensive
compact monograph that renders these phases justice.

In this book, I attempt to summarize and explain, from both an experimental
and a theoretical viewpoint, all the features that are necessary to understand the
properties of these new materials. The book covers elastic, electrical, thermal,
chemical, and mechanical properties in different temperature regimes. As much
as possible, I tried to emphasize the physics.

One of the joys of working with the MAX phases is the ease by which one can
change chemistry, while keeping the structure the same. As I anticipated many
years ago, this has proven to be a real boon; I have a hunch, with no data to back me
up, that the progress the MAX phase community has made in understanding their
properties, in the past decade or so, can be traced directly to this feature. The range
of experimental and theoretical techniques currently available has also indubitably
made a big difference. In today’s world, like much else, we have Science on steroids.
We are quickly reaching the point — if we have not it already — at which the rate of
data generation far exceeds our capability to make sense of them. In this book, I
tried to buck the tide and make sense of what we currently know. The reader of this
book will quickly realize from the sheer volume of data tabulated and plotted that
this was not a trivial task. I do believe, however, that to truly understand properties
and what influences them, one needs, every now and then, to step backward and
make out the forest from the trees.

As shown in this book, this systemic approach, while tedious, is quite gratifying
and edifying. For example, one of the leitmotivs of this book is the idea that above

a certain concentration of valence electrons per unit volume, n,,;, the MAX phases
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are somehow destabilized. While plotting one set of properties versus n,, does
not necessarily make a compelling case, but when this destabilization is repeated
and recognized in several different properties, the idea becomes harder to dismiss.
Another important idea of this book is that we can roughly subdivide the MAX
phases into four categories: (i) those with exceptionally low c-parameters, such as
Ti,SC; (ii) those with large atoms, such as Sn, Hf, Zr; (iii) those in between but
with low n, values; and (iv) those in between, but with high n , values that are
relatively unstable, such as some of the Cr-containing MAX phases. Hopefully, this
idea comes across.

The other joy of working with the MAX phases is their two-dimensional nature,
especially when it comes to mechanical properties. The fact that dislocations are,
for the most part, confined to 2D and that the orientation of the basal planes on
which these dislocations glide are in many cases readily determined from optical
microscope micrographs has rendered understanding their mechanical response
rather straightforward. In solid-state physics, the pedagogy is well established; first
you solve the one-dimensional problem, move on to the 2D, and then, and only then,
generalize to the most complicated 3D situation. In dealing with the deformation
of solids, however, the hapless metallurgy or materials science undergraduate is
immediately asked to deal with more than five independent slip systems, a daunting
task that certainly biased me toward ceramics, where I thought I would be safe.
That I can now talk somewhat intelligently about dislocations is, in my case, not
a mark of any intellectual prowess, but rather a reflection of the simplicity of the
problem at hand. Basically, dislocations in the MAX phases, and in the much larger
class of solids that we identified as kinking nonlinear elastic (KNE), appear either in
dislocation pileups (DPs) and/or dislocation walls normal to the pileups or arrays.
Confining the dislocations to 2D also helped us identify a new micromechanism
in solids, namely, incipient kink bands (IKBs). As discussed in Chapters 8 and 9,
[KBs are the yin to the yang of DPs. IKBs absorb significant amounts of energy
at low strains; DPs result in large strains, but little stored energy. It follows that
Nature’s first line of defense in the case of KNE solids is to nucleate IKBs.

By bringing together, in a unified, self-contained manner, all the information
on MAX phases hitherto only found scattered in the journal literature, I hope to
help move the field along to the next stage. I have also tried to critically assess
the now voluminous literature. The number of papers in the field has increased
recently and the task of anybody attempting to review this body of work is becoming
daunting. In 2000, when I wrote an early review article on the subject, the situation
was significantly easier.

In addition to outlining the contents of this book, it is important to stress what
it is not about and what it does not cover. This book is geared to understand the
physics of the MAX and hence the synthesis of these phases is not discussed. Thin
films are for the most part not covered. A recent review has done this topic justice.
When thin films are discussed, it is only to make an important point for which
the information is lacking in bulk solids. Composites of MAX phases with other
compounds and second phases are also mostly not discussed, except in instances
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where comparing the properties of the composites with the pure bulk materials
sheds light on the properties of the latter, which is the main focus of this book.

A perusal of the figures in this book will quickly establish that most of the
figures originate from papers we wrote. This does not imply that other work is
less important. It simply reflects the fact that the information was more easily
accessible. In many cases, results and data have been grouped/replotted and in that
case having access to the raw data is invaluable and time saving. I have assiduously
tried to assign credit where credit is due. It follows that to the best of my abilities,
I carefully combed the literature to make sure that when new information on the
behavior of the MAX phases was reported, the original paper was cited. The record
is out there and I tried my best. If at any time, such attribution is incorrect or
lacking, I sincerely apologize and please contact me and I will try to set the record
straight in any future editions of this book or any papers [ write.

This book is divided into 11 chapters. The first chapter is an introductory chapter
where the history of the MAX phases is outlined. Chapter 2 reviews the atomic
structures and bonding commonalties and trends in these phases. This chapter
also summarizes ab initio or density functional theory (DFT) calculations that,
for the most part, capture the essence of the bonding in these solids. Chapter 3
deals with their elastic properties, both experimental and those calculated from
DFT. Chapter 4 summarizes the thermal properties, including thermal expansion,
conductivity heat capacities, atomic displacement parameters, and stability. Chapter
5 deals with the electrical transport, including conductivity, and Hall and Seebeck
coefficient measurements. Their optical and magnetic properties are also touched
upon.

Chapter 6 deals with the reactivity of the MAX phases with oxygen and other
gases. The reactivities of the MAX phases with solids and liquids, including molten
metals and common acids and bases, are reviewed in Chapter 7.

Chapters 8—10 deal with the mechanical properties. Chapter 8 deals with kinking
nonlinear elasticity and damping. How the MAX phases respond to stresses —
compressive, shear, tensile, and so on — at ambient temperature are discussed in
Chapter 9. Chapter 10 deals with their response to stresses at elevated temperatures,
including creep. Chapter 11 summarizes some of the outstanding scientific issues
and outlines some of the potential applications and what needs to be done,
research-wise, for these solids to be more widely used.

The quality and quantity of the papers one publishes in academia depend critically
on the quality, resourcefulness, imagination, and hardwork of one’s students. I
would thus like to sincerely thank all my students who have worked with me on the
MAX phases over the past 15 or so years. In rough chronological order, they are:
T. El-Raghy, D. Brodkin, M. Radovic, S. Chakraborty, A. Procopio, J. Travaglini,
L. H. Ho-Dug, L. Salama, P. Finkel, A. Murugaiah, T. Zhen, A. Ganguly, E. Hoffman,
S. Gupta, S. Basu, A. Zhou, S. Amini, T. Scabarosi, . Lloyd, I. Albaryak, C. J.
Spencer, M. Shamma, N. Lane, D. Tallman, B. Anasori, M. Naguib, G. Bentzel,
and J. Halim. It was a distinct pleasure to work with each and every one of them.
Their productivity and contributions to the field cannot be overemphasized.
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The number of postdocs that worked with me over the years is not as numerous
as my students, but their input and insights were as important and appreciated.
In chronological order, I would like to thank L. Farber, N. Tzenov, D. Filimonov,
J. Cordoba, and V. Presser. I also had the distinct pleasure of working with a few
visiting scholars who spent some time with me at Drexel. [ would thus like to thank
Drs. Z.-M. Sun, O. Yeheskel, V. Jovic, T. Cabioch, and E. Caspi.

I like to collaborate and I have sought out collaborators in many countries and
on many continents. In that vein, I would like to profusely thank the following
colleagues and friends with whom I have worked with over the years on the MAX
phases and from whom I learned quite a bit. I am greatly indebted to G. Hug, M.
Jaouen, L. Thilly, S. Dubois, M. Le Flem, |.-L. Béchade, and ]. Fontaine in France;
J. Hettinger and S. Lofland at the Rowan University; L. Hultman, M. Magnuson,
P. Eklund, J. Rosen, J. Lu, and R. Ahuja in Sweden; and |. Schneider in Germany.

Much of this work would not have been possible without funding. The ceramics
program of the Division of Materials Research of the National Science Foundation
funded much of the early MAX phase work. I would like to especially thank Drs.
L. Madsen and L. Schioler for their support. The Army Research Office has also
funded our MAX phase work over the years. Here I am indebted to Drs. D. Stepp
and S. Mathaudhu who have supported, and are still supporting, the work we are
doing.

I would also like to acknowledge the support of the Swedish Foundation for
Strategic Research (SSF) and the Linkoping University for funding my numerous
visits to Linkoping since 2008. Prof. Lars Hultman must get the lion’s share of the
credit for arranging this very fruitful collaboration that is still ongoing. | would also
like to thank the University of Poitiers, Poitiers, France, for hosting me for a few
extended visits over the years. I would especially like to thank Profs. M. Jaouen and
T. Cabioch for arranging the visits and their wonderful hospitality.

I would also be remiss if | did not acknowledge the many very fruitful discussions
I have had over the years with my colleagues in the Department of Materials Science
and Engineering at the Drexel University. Special thanks are due to R. Doherty,
Y. Gogotsi. S. Tyagi, A. Zavaliangos, J. Spanier, G. Friedman, A. Kontsos, A.
Zavaliangos, and S. Kalidindi.

I have coauthored papers with a large number of colleagues in many corners
of the world. This list (again somewhat chronologically) includes Drs. M. Amer,
M. Gamarnik, E. H. Kisi, |. A. Crossley, S. Myhra, L. Ogbuji, S. Wiederhorn,
R. O. Ritchie, H.-I. Yoo, H. Seifert, F. Aldinger, J. Th. M. De Hosson, H. Drulis,
M. Drulis, B. Manoun, J. Fontaine, ]. Schuster, S. K. Saxena, D. Jurgens, M.
Uhrmacher, P. Schaaf, B. Yang, D. Brown, S. Vogel, B. Clausen, X. He, and Y. Bai.
I am indebted to all of them for the excellent papers we published together.
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Introduction

1.1
Introduction

The M, ,AX,, or MAX, phases are layered, hexagonal, early transition-metal
carbides and nitrides, where n = 1, 2, or 3 “M” is an early transition metal, “A” is
an A-group (mostly groups 13 and 14) element, and X" is Cand/or N. In every case,
near-close-packed M layers are interleaved with layers of pure group-A element
with the X atoms filling the octahedral sites between the former (Figure 1.1a—c).
The M X octahedra are edge-sharing and are identical to those found in the rock
salt structure. The A-group elements are located at the center of trigonal prisms
that are larger than the octahedral sites and thus better able to accommodate the
larger A atoms. The main difference between the structures with various n values
(Figure 1.1a—c) is in the number of M layers separating the A layers: in the M, AX,
or 211, phases, there are two; in the M;AX,, or 312, phases there are three; and
in the M,AX;, or 413, phases, there are four. As discussed in more detail in later
chapters, this layering is crucial and fundamental to understanding MAX-phase
properties in general, and their mechanical properties in particular. Currently, the
MAX phases number over 60 (Figure 1.2) with new ones, especially 413s and solid
solutions, still being discovered.

Most of the MAX phases are 211 phases, some are 312s, and the rest are 413s.
The M group elements include Ti, V, Cr, Zr, Nb, Mo, Hf, and Ta. The A elements
include Al Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl, and Pb. The X elements are either C
and/or N.

Thermally, elastically, and electrically, the MAX phases share many of the
advantageous attributes of their respective binary metal carbides or nitrides:
they are elastically stiff, and electrically and thermally conductive. Mechanically,
however, they cannot be more different: they are readily machinable — remarkably a
simple hack-saw will do (Figure 1.3) — relatively soft, resistant to thermal shock, and
unusually damage-tolerant. They are the only polycrystalline solids that deform by
a combination of kink and shear band formation, together with the delaminations
of individual grains. Dislocations multiply and are mobile at room temperature,
glide exclusively on the basal planes, and are overwhelmingly arranged either

MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. First Edition. Michel W. Barsoum.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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(b)

Figure 1.1 Atomic structures of (a) 211, (b) 312, and (c) 413 phases, with emphasis on
the edge-sharing nature of the MX, octahedra.
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Early transition Group A . C and/or T
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312 Phases
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(V,Cr),AIC,)  “TisSnC,

TaAIC,

|
{
|
|

Ti,AIN® Hi,PbC® crGaC  VASC  TilnN
(Nb.T),AIC* Ti,AN,,C,.* Nb,GaC  NbAsC  ZrinN

Cr,AlC ZoSC " MoGaC  Ti,CdC  HEInN 413 Phases
TaAlIC Ti,SC Ta,GaC*  Sc,InC Hf,SnN TigAINg, V4AIN,
V,AIC Nb,SC Ti,GaN  TinC  Ti,TIC i

V,PC H1,SC crGaN  ZrinC  Zr,TIC Ti4GaCg; NbyAICs
Nb,PC Ti,GaC V,GaN  NbInC  Hf,TIC Ta,AIC,.

Ti,PbC* V,GaC* V,GeC  HLInC  Zr,TIN

Figure 1.2 List of known MAX phases and elements of the periodic table that react to
form them.

in arrays or kink boundaries. They combine ease of machinability with excellent
mechanical properties, especially at temperatures >1000 “C. Some, such as Ti, SiC,
and Ti,AIN;, combine mechanical anisotropy with thermal properties that are
surprisingly isotropic.

As discussed in this book, this unusual combination of properties is trace-
able to their layered structure, the mostly metallic —with covalent and ionic



