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Preface

The purpose of this book is to introduce to advanced graduate students and other
interested mathematicians some of the basic technique and results from manifold
topology. It is assumed that the reader is familiar with algebraic topology through
cup products and Poincaré duality as well as with fiber bundles and characteristic
classes; e.g. with the material in the first half of the book “Characteristic Classes”
by J. W. Milnor and J. D. Stasheff. A glance at the Contents shows the topics that
are covered. The book is based on a course of lectures given by the first author
during the fall semester, 2009 at the Morningside Center of the Chinese Academy
of Sciences. It was originally planned as a year long course; hence some of the
topics alluded to in the Introduction are not covered here. These will be done in
a second volume.

The writing of this book was partially supported by a grant from the National
Science Foundation of the USA and by a Visiting Professorship at the Chinese
Academy of Sciences of the first author, and by a grant from the National Science
Foundation of China of the second author.
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Introduction

The book is devoted to the basic problem of classifying manifolds up to homeomor-
phism and up to diffeomorphism. Today this classification is pretty well understood
for many manifolds of geometric significance, including for example those support-
ing a Riemannian metric of non-positive sectional curvature (except in dimension
4). The starting point for this classification is due to the work of Kervaire, Milnor
and Smale from about 1956—1963. Their work can be thought of as starting to
answer the following two questions.

Question 1.1 (Kervaire-Milnor). Given a topological manifold M" (of dimen-
sion n), does M™ support a differential structure? And if so, how many non-
diffeomorphic structures does M™ support?

Question 1.2 (Smale). Given a topological space K, does there exist a compact
(topological) manifold (without boundary) homotopy equivalent to K? And if so,
how many non-homeomorphic such manifolds are there?

We begin with some explanatory definitions.

An n-dimensional (topological) manifold is a Hausdorff topological space M
which is locally homeomorphic to n-dimensional Euclidean space R™. Additionally
one requires the topology on M to have a countable basis; i.e. there exists a
countable collection {Uy} of open subsets U, of M such that any open set U in
M is a union of sets from this collection. (When M is compact, this condition is
superfluous. And we will be mainly interested in compact manifolds which are also
called closed manifolds.)

But the original reason for thinking about manifolds (probably due to Rie-
mann) was as objects to do calculus on. For this the notion of smooth manifold
is needed. And perhaps the most conceptual way to describe a (compact) smooth
m-dimensional manifold is as a closed and bounded subset of some Euclidean space
R™ (n > m) which has an m-dimensional tangent plane T}, at each point z € M;
i.e. there exists a pair of perpendicular affine subspaces T, IV, passing through z
such that

R™ =T, x N,

and M is locally the graph of a smooth function
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where (Dy;)z=0 = 0. (Here U, is an open neighborhood of z € T}.)

A smooth m-manifold is clearly a topological m-manifold; but it has more
structure. Namely a cover by open sets V, = graph(y;) and charts v: Vy; —
T, = R™ where v, is the perpendicular projection into T,. These charts have the
following two properties:

1. ¥.: V, » U, CT, =R™ is a homeomorphism,;
2. Yz o, 1 py (Ve NV,) — T, = R™ is a smooth map.

That is to say, the charts {(Vz,vz)| € M} are a smooth structure on M. This
is the definition of a smooth manifold given in textbooks; i.e. a smooth manifold
is a topological manifold equipped with a smooth structure. Whitney’s famous
embedding theorem showed that every smooth structure on a topological manifold
M arises in the manner described above.

A continuous map f: M — N between a topological m-manifold M and a
topological n-manifold N equipped with smooth structures @); and @y, respec-
tively, is smooth if for each pair of charts (V,¢) € &5 and (U,9) € Pn, the
composite map

pofop L:R™ D (VN fHU)) —»y(U) SR

is smooth (in the calculus sense).

In particular smooth structures @ and ¥ on the same topological manifold M
are said to be equivalent provided both id: (M,®) — (M,¥) and id: (M,¥) —
(M, ®) are smooth maps.

Ezample 1.3. Consider M = R, with smooth structures

= {(R,p(z) =2)}, ¥={R,¢(@) =2}

Now id: (M, ®) — (M, V) is smooth; but id: (M,¥) — (M, d) is not. Therefore @
and ¥ are inequivalent smooth structures on R.

Hence even the simplest topological manifold supports inequivalent smooth
structures. But there is a weaker equivalence relation between smooth structures
which is one of the primary interest in differential topology; namely that of diffeo-
morphic structures.

A homeomorphism f: (M,®) — (N,¥) between topological manifolds M and
N equipped with smooth structures @ and ¥, respectively, is a diffeomorphism
provided both

f: (M, ®) - (M,?)

and
F71 (M, @) — (M, 9)

are smooth. When a diffeomorphism exists we say that the two differentiable man-
ifolds (M, ®) and (N, ¥) are diffeomorphic. This is the weaker equivalence relation
mentioned above.
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Note that the two differential structures ¢ and ¥ on the manifold R in the above
example are diffecomorphic even though they are inequivalent; in fact f(z) = x!/3
is a diffeomorphism f: (R,®) — (R,¥).

Sixty years ago it was generally assumed that every topological manifold M
supports a differential structure and that the structure is unigue up to diffeomor-
phism. Furthermore this belief had been recently strengthened by the proof of
Hilbert’s 5th Problem (Gleason, Montgomery-Zippen) which implied in the case
that M is a topological group, then M supports a smooth structure such that both
multiplication: M x M — M and inverse: M — M are smooth maps. Furthermore
any two smooth structures on M satisfying these conditions are diffeomorphic.

But in 1956 Milnor startled the mathematical community by constructing an
“exotic” differential structure ¥ on the 7-dimensional sphere S7 = {z € R®| |z| =
1}. S7 has a canonical differential structure @ determined by its “birth certificate”
embedding in R®, as explained above. But Milnor’s structure comes from some
other subspace X C R!® having 7-dimensional tangent planes T, z € X, again as
explained above. There is a homeomorphism f: §7 — X; but no diffeomorphism.
Formally ¥ is the pull to S7 via f of the structure on X induced by its embedding
XY C R'5. And four years later Kervaire constructed a 10-dimensional topological
manifold which does not support any differential structure.

To state the following conjectures we need more explanatory definitions.

A continuous map f: X — Y between topological spaces X and Y is a homo-
topy equivalence provided there exists a second continuous map ¢g: ¥ — X such
that both g o f is homotopic to idx (written go f ~idx) and f o g ~ idy. And
such a map g (if it exists) is called a homotopy inverse to f. A homotopy inverse
is unique up to homotopy.

We say that two topological spaces X and Y are homotopy equivalent if there
exists a homotopy equivalence f: X — Y. Since every homeomorphism is clearly
a homotopy equivalence, homotopy equivalence puts a weaker equivalence relation
on the collection of all topological spaces than homeomorphism; i.e. if X and Y
are homeomorphic then they are homotopy equivalent. But algebraic topology
tools are quite effective for determining when two spaces are homotopy equivalent.
Hence the following conjecture:

Naive Conjecture 1.4. Homotopy equivalent closed (i.e. compact) manifolds are
homeomorphic.

This conjecture is true for 2-dimensional manifolds. However in the 1930s some
simple natural examples were exhibited showing this Naive Conjecture to be false
even for 3-dimensional manifolds. But only non-simply connected examples were
known. This prompted Hurewicz to make the following conjecture.

Hurewicz Conjecture 1.5. Simply-connected homotopy equivalent closed man-
ifolds are homeomorphic.

Remark 1.6. This well-known conjecture is explicitly stated and discussed as Prob-
lem 31 on the list compiled by R. Lashof , “Problems in differential and algebraic
topology”, Seattle conference, 1963, Ann. of Math. 81 (1965), 565-591.
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His conjecture was a vast generalization of Poincaré’s conjecture that every
simply-connected closed 3-dimensional manifold M3 is homeomorphic to the 3-
sphere S3. To see this one of course needs only show that M is homotopy equivalent
to S2. But this follows from Poincaré duality, Hurewicz Theorem and Whitehead
Theorem. We briefly sketch the argument since similar arguments will frequently
occur. First of all, M? is orientable, because its orientation (2-sheeted) covering
space is trivial since 71 (M3) = 1. By Poincaré duality

Hy(M?) = H'(M?®) = Hom(m, M, Z) = 0.

By Hurewicz Theorem 73(M3) = H3(M3) = Z. Let f: S® — M3 generate m3(M?3).
Then f is a homotopy equivalence by Whitehead Theorem which asserts that
any map between simply-connected “nice spaces” which induces an isomorphism
between their homology groups is a homotopy equivalence. And manifolds are
particular instances of nice spaces.
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The h-Cobordism Theorem

2.1 The h-Cobordism Theorem and Generalized Poincaré
Conjecture

Smale proved a very important special case of the Hurewicz Conjecture in 1961.
Namely he showed that any closed (smooth) manifold M homotopy equivalent to
the m-sphere S™, where m > 6, is homeomorphic to S™. This verified what had
been known as the Generalized Poincaré Conjecture (GPC).

Remark 2.1. Stallings (1965) improved Smale’s result to include m = 5, and New-
man (1966) showed the assumption that M has a smooth structure is superfluous.
They both used a technique much different from Smale’s, called engulfing.

The fundamental result from which the Generalized Poincaré Conjecture fol-
lows is Smale’s h-Cobordism Theorem, which we proceed to formulate. For this
we need to generalize the notion of m-dimensional manifold to m-dimensional
manifold with boundary.

A topological m-dimensional manifold with boundary is again a Hausdorff
topological space W whose topology has a countable basis, but which is now as-
sumed to be locally homeomorphic to either R™ or [0,00) x R™~1; i.e. each point
x € W has an open neighborhood homeomorphic to either R™ or [0,00) x R™~ 1.
Those points z € W which have no neighborhood homeomorphic to R™ form the
boundary W of W. It can be shown that either OW = @ or W is an (m — 1)-
dimensional manifold (without boundary; i.e. 8(0W) = @) and W — W is an
m-~dimensional manifold. Furthermore the collar neighborhood theorem says that
OW has an open neighborhood C, “a collar of OW in W” such that C is homeo-
morphic to 8W x [0, 00) and via a homeomorphism

f: W x [0,00) > CCW

such that f(z,0) = z.
A differential structure @ on a topological m-manifold W with boundary is
again defined by giving a collection of charts

Yg: Ve — U
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for each x € W, as before in defining a smooth structure on a topological m-
manifold (without boundary), except now U, is an open subset of [0,00) x R™~1.

If & is a smooth structure on a topological m-manifold W with boundary then
OW inherits, in a natural way, a smooth structure @5y from @. And the collar
map

f:0W x [0,00) = C

can be chosen to be a diffeomorphism.
Ezample 2.2. D™ = {z € R"| |z| < 1} is a smooth n-dimensional manifold with
OD™ = S"~1, A collar C in this case can be taken to be D™ — 0. We refer to D™ as
the “n-disc” or “n-ball”.

A cobordism is a manifold W with boundary where W is expressed as the
disjoint union of two non-empty open subsets 8~ W and 8*W (which are now
both (dim W — 1)-dimensional manifolds); W is said to be a cobordism from 8~ W
to OTW.

Ezample 2.3. Here is a 2-dimensional example.

In the pictured example (Figure 2.1), two small (open) discs have been deleted

from the 2-dimensional torus T2 = §! x S?.

W

. torus -2 open discs

oW

Figure 2.1

Definition 2.4. An h-cobordism is a compact cobordism W such that both inclu-
sion maps 0~ W C W and 87W C W are homotopy equivalences.

The cobordism W in the example above is not an h-cobordism since 1 (0~ W)
and 7y (W) are not isomorphic; 71 (0~ W) = Z is an abelian group while m (W) =
Z x Z % Z is not abelian.

But there is a canonical example of an h-cobordism; namely W = M x [0, 1],
the cylinder with base a closed manifold M (Figure 2.2).

It is hard to think of another example. In fact that is the gist of Smale’s
Theorem.

h-Cobordism Theorem. Let W™ be a smooth h-cobordism. If m (W) =1 and
m > 6, then W is diffeomorphic to W x [0, 1].



