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Preface

This book is a reprinting of the multivariable portion of my text Calculus, Second Edition,
published by Brooks/Cole in 1991. The chapters reproduced here cover: infinite sequences
and series; three-dimensional analytic geometry and vectors; partial derivatives; multiple inte-
grals; vector calculus; and differential equations. These chapters are a direct continuation of
my Single Variable Calculus, Second Edition, also published in 1991, which contains Chapters
1-10 of Calculus. Particularly important results from single variable calculus are summarized
for at-a-glance review in the section titled Key Definitions, Properties, and Theorems from
Single Variable Calculus, following the table of contents.

While teaching from the first edition for three years, I (and my students) have had ideas,
some major, some minor, for improving the exposition and organization and for adding new
and better examples and exercises. I have also had the benefit of some valuable suggestions
from colleagues, both friends and strangers, which have been incorporated into the second
edition. Here is a summary of some of the principal changes:

m In Chapter 10 there are more graphs of Taylor Series approximations, and Taylor’s Formula
is now proved in the text instead of in the exercises. Multiplication and division of power
series are now covered.

® Chapter 11 contains more applications of vectors in examples and exercises. Kepler’s
First Law is proved in the text although, as before, Laws 2 and 3 are left as exercises with
hints.

® Chapter 12 now contains many more computer graphics of surfaces and level curves,
both in examples and exercises, and tree diagrams have been added to illustrate the Chain
Rule. The geometric basis of Lagrange multipliers is explained.

® A new section on surface area has been added in Chapter 13. Although parametric surfaces
are still given a full treatment in Chapter 14, it is now possible to cover surface area and
surface integrals nonparametrically.

= A new review of complex numbers is included (page xxiv).

® In this edition I have added what I call Problems Plus after even-numbered chapters.
These are problems that go beyond the usual exercises in one way or another and require a
higher level of problem-solving ability. The very fact that they do not occur in the context of
any particular chapter makes them a little more challenging. I particularly value problems in
which a student has to combine methods from two or three different chapters. In recent years
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I have been testing these Problems Plus on my own students by putting them on assignments,
tests, and exams. Because of their challenging nature I grade these problems in a different
way. Here I reward a student significantly for ideas toward a solution and for recognizing
which problem-solving principles are relevant. My aim is to teach my students to be unafraid
to tackle a problem the likes of which they have never seen before.

m A counterpart to the Problems Plus are the Applications Plus, which occur after odd-
numbered chapters and which tend to be challenging because they involve related concepts
from science that are usually outside students’ experiences. Again the idea is to combine
concepts and techniques from different parts of the book. These problems are helpful in
demonstrating the sheer variety of the applications of calculus but also in focusing the students’
attention on the essential mathematical similarities in diverse situations in science. By solving
a wide variety of concrete problems, I hope that they will come to appreciate the power of
abstraction. I am grateful to Garrett Etgen for amassing such a wide-ranging collection of

applied problems.

I am indebted to the following astute reviewers, whose reasoned criticism enabled this book
and its companion volumes to be better resources for both teacher and student:

John Alberghini,

Manchester Community College
Daniel Anderson, University of lowa
David Berman, University of New Orleans
Richard Biggs, University of Western Ontario
Stephen Brown
David Buchthal, University of Akron
James Choike, Oklahoma State University
Carl Cowen, Purdue University
Daniel Cyphert, Armstrong State College
Robert Dahlin
Daniel DiMaria, Suffolk Community College
Daniel Drucker, Wayne State University
Dennis Dunninger, Michigan State University
Bruce Edwards, University of Florida
Garrett Etgen, University of Houston
Frederick Gass, Miami University of Ohio

Michael Albert, Carnegie-Mellon University
Jorge Cassio, Miami-Dade Community College
Jack Ceder,

University of California, Santa Barbara
Seymour Ditor,

University of Western Ontario
Ken Dunn, Dalhousie University
John Ellison, Grove City College
William Francis,

Michigan Technological University
Gerald Goff, Oklahoma State University
Stuart Goldenberg,

California Polytechnic State University
Richard Grassl, University of New Mexico
Melvin Hausner,

Courant Institute, New York University

Bruce Gilligan, University of Regina
Stuart Goldenberg,

California Polytechnic State University
Michael Gregory, University of North Dakota
Charles Groetsch, University of Cincinnati
D.W. Hall, Michigan State University
Allen Hesse, Rochester Community College
Matt Kaufmann
David Leeming, University of Victoria
Mark Pinsky, Northwestern University
Lothar Redlin,

The Pennsylvania State University
Eric Schreiner, Western Michigan University
Wayne Skrapek, University of Saskatchewan
William Smith, University of North Carolina
Richard St. Andre, Central Michigan University
Steven Willard, University of Alberta

Clement Jeske,

University of Wisconsin, Platteville
Jerry Johnson, Oklahoma State University
Virgil Kowalik, Texas A & I University
Sam Lesseig, Northeast Missouri State University
Phil Locke, University of Maine
Phil McCartney, Northern Kentucky University
Mary Martin, Colgate University
Igor Malyshev, San Jose State University
Richard Nowakowski, Dalhousie University
Vincent Panico, University of the Pacific
Tom Rishel, Cornell University
David Ryeburn, Simon Fraser University
Ricardo Salinas, San Antonio College
Stan Ver Nooy, University of Oregon
Jack Weiner, University of Guelph
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In addition I would like to thank:

Harold Bacon and Mary Sunseri, Stanford University, who taught me how to teach calculus
when I was a graduate student at Stanford.

Dan Anderson, University of Iowa, Dan Drucker, Wayne State University, and Barbara
Frank, The Pennsylvania State University, for their careful working of the solutions to all the
problems in the text and their authoring of Volumes 1 and 2 of the Student Solutions Manual.
Student contributors were Aaron Childs, Loris Corazza, Michael Gmell, Brett Goodwin, and
Tony di Silvestro.

David McKay, California State University, Long Beach, and Paul Yearout, professor emer-
itus from Brigham Young University, for proofing galleys and pages.

Bruce Char, Oak Ridge National Laboratory, University of Tennessee, David Hayes, San
Jose State University, and Vincent Panico, University of the Pacific, for their helpful contri-
butions to the appendix material.

Zdislav Kovarik, my colleague at McMaster University, for the ideas of Appendix D.

Garrett Etgen, University of Houston, for researching, writing, and solving the Applications
Plus exercises, and Dan Drucker, Wayne State University, David McKay and Saleem Watson,
California State University, Long Beach, and Lothar Redlin, The Pennsylvania State University,
for checking the solutions.

Eric Bosch, McMaster University, and Dennis Schneider, Knox College, for their contri-
butions of computer graphics.

Richard St. Andre, Central Michigan University, for the Study Guide; Joan Thomas and
Engineering Press, Inc., for their individual contributions to the Test Item file; J.S. Devitt,
University of Waterloo, for his Maple® and Calculus; K. Heuvers, J. Kuisti, W. Francis, G.
Ortner, D. Moak, and D. Lockhart, Michigan Technological University, for their Linear
Algebra for Calculus; J. Douglas Child, Rollins College, Chris D’ Arcy, St. George’s College,
Robert Kowalczyk and Adam Hausknecht, Southeastern Massachusetts University, Phoebe T.
Judson, Trinity University, Vivian Y. Kraines, Meredith College, and Roy E. Myers, The
Pennsylvania State University, for their individual contributions to Calculus Laboratories
for Brooks/Cole Software Tools.

Most of these lab authors have also written the software that the labs require. Thanks to
Ian Bell, Jon Davis, and Steve Rice, Queen’s University, for Calculus-Pad®; Roy E. Myers,
The Pennsylvania State University, for Surface Plotter; Chris D’ Arcy, St. George’s College,
for Image-Calculus; J. Douglas Child, Rollins College, for Calculus T/L; Robert Kowalczyk
and Adam Hausknecht, Southeastern Massachusetts University, for TEMATH.

Finally, I thank Kathi Townes for her production coordination and interior illustration for
this text, Lee Hocker for the cover photograph, and the following Brooks/Cole staff: Joan
Marsh, production services manager; Katherine Minerva, designer; Maureen Allaire, product
manager; Margaret Parks, advertising manager; and Nancy Champlin, editorial assistant.
Special thanks are due to the mathematics editor, Jeremy Hayhurst. He deserves much credit
for the improvements in this edition.

JAMES STEWART



Key Definitions, Properties, and Theorems
from Single Variable Calculus

Blue numbers refer to Single Variable Calculus, Second Edition: Early Transcendentals.

Definition (19) A function f is a rule that assigns to each element x in a set A exactly one
element, called f(x), in a set B.

Definition (1.3) We write

lim f(x) = L

x—a
and say
“the limit of f(x), as x approaches a, equals L”

if we can make the values of f(x) arbitrarily close to L (as close to L as we like)
by taking x to be sufficiently close to a but not equal to a.

Limit Laws (1.6) Suppose that ¢ is a constant and the limits

lim f(x) and lim g(x)

x—a

exist. Then
1. lim [f(x) + g(x)] = lim f(x) + lim g(x)

X—a

2. lim [f(x) — g(x)] = lim f(x) — lim g(x)

3. lim [¢f (x)] = ¢ lim f(x) 4. lim [f(x)g(x)] = lim f(x) - lim g(x)
lim f(x)
5. lim &) _ ama” if lim g(x) # 0

x-a g0)  lim g(x)  x-a

xX—a




Further Properties
of Limits

The Squeeze Theorem (1.10)

Definition (1.12)

Definition (1.16)

Key Definitions, Properties, and Theorems

6. lim [f(x)]" = [lim f(x)]" where 7 is a positive integer

x—a x—a

7. lim ¢
xX—a

I
o

8. lim x

x—a

a

9. lim x" = a” where n is a positive integer
xX—a

10. lim Vx = Va where n is a positive integer
xX—a
(If n is even, we assume that a > 0.)

11. lim V f(x) = pllim f(x) where n is a positive integer
xX—a

x—a
(If n is even, we assume that lim, ,, f(x) > 0.)

If f(x) < g(x) < h(x) for all x in an open interval that contains a (except possi-
bly at a) and

lim f(x) = lim h(x) = L

xX—a XxX—a

then lim g(x) = L

Xx—a

Let f be a function defined on some open interval that contains the number a,
except possibly at a itself. Then we say that the limit of f(x) as x approaches a
is L, and we write

lim f(x) = L

xX—a
if for every number £ > 0 there is a corresponding number 6 > 0 such that

|fx) —L| <&  whenever O0<|x—a|l<3$

A function f is continuous at a number a if

,lfffz fx) = f(a)




Theorem (1.19)

Theorem (1.24)

Definition (2.2)

2.3)

Geometric interpretation
of the derivative

Theorem (2.8)

Key Definitions, Properties, and Theorems

Xi

If f and g are continuous at a and c is a constant, then the following functions
are also continuous at a:

1. f+g
2. f—4
3.
4

e

if gla) # 0

2}
Q8

If g is continuous at a and f is continuous at g(a), then (f ° g)(x) = f(g(x)) is
continuous at a.
The derivative of a function f at a number a, denoted by f'(a), is
@ = tim 1@ D~ 1@
h—0 h
if this limit exists.
e = tim [0 = 5@
d y = f ? y = fw
fla+ h) = f(a) f) — fla)

|

|
0 | 0

Mol a a+h x — a X
@) Fa) = Bim fla + h})l - fl@ ®) fl@) = lim fx) : f(a)
h—0 x—a X a

= slope of tangent at P

slope of tangent at P

If f is differentiable at a, then f is continuous at a.




xii

y

0O(xz, f(x2))

P(xy, f(x)))

/ X X2 X
mpp = average rate of change

m = f'(x;) = instantaneous rate
of change

Table of Differentiation
Formulas (2.17)

Theorem (2.22)

Table of Derivatives of
Trigonometric Functions
(2.29)

The Chain Rule (2.30)

Key Definitions, Properties, and Theorems

The difference quotient

Ay _ fx) — fx)

Ax X, — X4

is the average rate of change of y with respect to x over the interval [x;, x,] and can
be interpreted as the slope of the secant line PQ in the figure. Its limit as Ax — 0 is the
derivative f’(x;), which can therefore be interpreted as the instantaneous rate of change
of y with respect to x or the slope of the tangent line at P(x;, f(x;)). Using the Leibniz
notation, we write the process in the form

dy _ Ay
dx_AI;ToAx

(cf) = cf’ F+g9 =f+4g
F-9 =f-4g (fg) = f'9 + fg'

’ [ T ’ d
(-5 dem

i ny — n—1
dx(x)—nx

lim sin0=

-0 O
4 (sinx) = 4 (csc x) = —sc x cot
2 inx cos x 2z (6scx) = —csc x cot x
2 (os ) = i £ (secx) = secxt
Zx (cos x sin x Zx (Sec x) = sec x tan x
da e mapd 4 = —papl
o (tan x) = sec“x o (cot x) = —cscex

If the derivatives g'(x) and f'(g(x)) both exist, and F = f o g is the composite
function defined by F(x) = f(g(x)), then F'(x) exists and is given by the product

F'(x) = f(9(x))g'(x)

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions,
then
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Newton's Method (2.52) f(x,)

Xpig = X —
T fe)

0
~—

Definition (3.1) A function f has an absolute maximum at c if f(¢) = f(x) for all x in D, where

4.1 D is the domain of f, and the number f(c) is called the maximum value of f
on D. Similarly, f has an absolute minimum at c if f(¢) < f(x) for all x in D
and the number f(c) is called the minimum value of f on D. The maximum and
minimum values of f are called the extreme values of f.

Definition (3.2) A function f has a local maximum (or relative maximum) at c if there is an
4.2) open interval / containing c¢ such that f(c¢) = f(x) for all x in /. Similarly, f has

a local minimum at c if there is an open interval / containing ¢ such that

f(c) < f(x) for all x in 1.

—
The Extreme Value Theorem (3.3) If f is continuous on a closed interval [a, b], then f attains an absolute maxi-
4.3) mum value f(c) and an absolute minimum value f(d) at some numbers ¢ and d
in [a, b].
Fermat’s Theorem (3.4) If f has a local extremum (that is, maximum or minimum) at ¢, and if f'(c)

4.4) exists, then f'(c) = 0.

Definition (3.6) A critical number of a function f is a number ¢ in the domain of f such that T
(4.6) either f'(c) = 0 or f'(c) does not exist.

(3.8) To find the absolute maximum and minimum values of a continuous function f
4.8) on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f(a) and f(b).

3. The largest of the values from steps 1 and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.
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Rolle’s Theorem (3.9)
(4.9)

The Mean Value Theorem (3.10)
(4.10)

(3.11)
(4.11)

(3.12)
(4.12)

Definition (3.18)
(4.18)

Test for Monotonic Functions
3.19)
4.19)

The First Derivative Test (3.21)
(4.21)

Key Definitions, Properties, and Theorems

Let f be a function that satisfies the following three hypotheses:
1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

3. f(a) = f(b)

Then there is a number ¢ in (a, b) such that f'(c) = 0.

Let f be a function that satisfies the following hypotheses:

1. f is continuous on the closed interval [a, b].
2. f is differentiable on the open interval (a, b).

Then there is a number c¢ in (a, b) such that

f) — f(a)

fllo) = b — a

or, equivalently,

f®) = fla) = f(o)® — a

A function f is called increasing on an interval / if

flxy) < f(xp)

It is called decreasing on / if

fxp) > f(xp)

It is called monotonic on / if it is either increasing or decreasing on I.

whenever x; < x, in /

whenever x; < x, in /

Suppose f is continuous on [a, b] and differentiable on (a, b).
(a) If f'(x) > 0O for all x in (a, b), then f is increasing on [a, b].
(b) If f'(x) < O for all x in (a, b), then f is decreasing on [a, b].

Suppose that ¢ is a critical number of a function f that is continuous on [a, b].

(@) If f'(x) > 0fora <x < cand fi(x) <O for c < x < b (that is, f' changes
from positive to negative at c), then f has a local maximum at c.

(b) If f'(x) <0 fora <x < cand f'(x) > 0 for ¢ < x < b (that is, f' changes
from negative to positive at c), then f has a local minimum at c.

(c) If f' does not change sign at ¢, then f has no local extremum at c.




Definition (3.22)
(4.22)

The Test for Concavity (3.23)
(4.23)

The Second Derivative Test (3.28)
(4.28)

Definition (3.29)
(1.26)

Definition (3.33)
(1.30)

Definition (3.41)
(1.38)

Key Definitions, Properties, and Theorems

If the graph of f lies above all of its tangents on an interval /, then it is called
concave upward on /. If the graph of f lies below all of these tangents, it is
called concave downward on /.

Suppose f is twice differentiable on an interval /.
(a) If f"(x) > O for all x in I, then the graph of f is concave upward on /.
(b) If f"(x) < O for all x in /, then the graph of f is concave downward on /.

Suppose f” is continuous on an open interval that contains c.
(@) If f'(¢c) = 0 and f"(c) > 0, then f has a local minimum at c.
(b) If f'(c) = 0 and f"(c¢) < 0, then f has a local maximum at c.

Let f be a function defined on some interval (a, ). Then

lim f(x) =L

X—%

means that the values of f(x) can be made arbitrarily close to L by taking x
sufficiently large.

Let f be a function defined on some interval (a, ). Then

lim f&x) = L

xX—%

means that for every € > 0 there is a corresponding number N such that

|fex) — L| < e whenever x>N

Let f be a function defined on some interval (a, ). Then

lim f(x) = =

xX—x

means that for every positive number M there is a corresponding number N > 0
such that

fx)>M whenever x>N




Theorem (4.2)
(5.2)

Definition of a
Definite Integral
4.9)

(5.9)

Theorem (4.12)
(5.12)

Properties of the Integral (4.13)
(5.13)
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If ¢ is any constant (that is, it does not depend on i), then

n n
(a) E ca; = ¢ 2 a;
=m =m

(b) Z(ai + b)) = Z a; + Z b;

© 2@ =b)= 2 a= 2 b

[
\

If f is a function defined on a closed interval [a, b], let P be a partition of [a, b]
with partition points xg, x;, . . . , X,, where

a=xg<x;<x<-:-<x,=b

Choose points x;" in [x;_;, x;] and let Ax; = x; — x;_; and ||P|| = max{Ax;}.
Then the definite integral of f from a to b is

n

b
f f@dx = lim D fGMAx,

IPII—-0 i=1

if this limit exists. If the limit does exist, then f is called integrable on the
interval [a, b].

If f is integrable on [a, b], then

b - n —_
f f(x) dx = 1imu21f<a+ibn“>

e M

Suppose that all of the following integrals exist. Then

b
1. f ¢ dx = c¢(b — a), where c is any constant

a
b

b b
L vw + g a = [ swan+ [ gw ax

a

[ 8]

w

b b
. f cfx)dx = ¢ j f(x) dx, where c is any constant
a a

I

b b b
L vw - g @ = [ @ ax = [ gw as

W

.Lbf(x)dx=f:f<x)dx+ff(x)dx




Order Properties of the
Integral (4.14)
(5.14)

The Fundamental Theorem
of Calculus (4.29)
(5.29)

The Substitution Rule for
Definite Integrals

(4.34)

(5.35)

Integrals of Symmetric
Functions (4.35)
(5.36)

(5.2)
(6.2)

Key Definitions, Properties, and Theorems

xvii

Suppose the following integrals exist and a < b.

b
6. Iff(x)BOforasbe,thenf f(x) dx = 0.
a

b

b
7. If f(x) = g(x) for a < x < b, then f fx) dx = J’ g(x) dx.

a

8. If m < f(x) <M fora < x < b, then

b
m(b—a)sj f&x)dx < M®b — a)

9.

f 50 dx’ < " \fl dx

Suppose f is continuous on [a, b].
() If g(x) = [} f(1) dt, then g'(x) = f(x).

(b) [ 2 f(x) dx = F(b) — F(a), where F is any antiderivative of f, that is,
F' = f.

If ¢’ is continuous on [a, b] and f is continuous on the range of g, then

g(b)

b
[ stewngw ax = [ du

g(a)

Suppose f is continuous on [—a, a].
(a) If fis even [ f(—x) = f(x)], then [, f(x) dx = 2 [§ f(x) dx.
(b) If fis odd [ f(—x) = —f(x)], then [%, f(x) dx = 0.

The area of the region bounded by the curves y = f(x), y = g(x), and the lines
x = a and x = b, where f and g are continuous and f(x) = g(x) for all x in
la, b], is

b
A= [ e - g ax




xviii

Definition of Volume (5.5)
(6.5)

Mean Value Theorem for
Integrals (5.17)
(6.17)

(6.3)
3.3

Properties of Exponential
Functions (6.9)
3.9)

(6.25)
(3.24)

(6.26)
(3.25)

(6.28)
(3.27)

(6.36)
(3.33)
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Let S be a solid that lies between the planes P, and P,,. If the cross-sectional area
of S in the plane P, is A(x), where A is an integrable function, then the volume
of S is

n b
V= lim 2 AHAx, = f Ax) dx

IPIl -0 i=1 a

If f is continuous on [a, b], then there exists a number c in [a, b] such that

b
L f(x) dx = f(c)(b — a)

If a > 1, then
lim ga* = © and lim a*=0
X—®© X—>—00

If0<a<1, then

lim a* =0 and lim ag* = »

x—0 X—>—0

lim e*=0 lim e* = o
x——% x—®©
limInx = lim Inx = —
Xx— x—0"

hx=y © e =x

In(e*) = x xER
erx=x x>0
d 1
PR

lim (1 + x)* = ¢

x—0




(6.37)
3.349)

Theorem (6.51)
(5.52)

Theorem (6.54)
(5.55)

Theorem (6.59)
(3.36)

Table of Derivatives of
Inverse Trigonometric
Functions (6.72)
(3.49)

Definition of the Hyperbolic
Functions (6.76)
(3.50)

Table of Derivatives of
Hyperbolic Functions (6.78)
(3.52)
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e=1im<
n—o

n
1+1>
n

&

—a*=a*lna

Xix

The only solutions of the differential equation dy/dt = ky are the exponential

functions
(1) = y(0)e¥
i (sin"x) — ; i (csc‘lx) = _;
dx V1 — x2 dx xVx2 -1
d ooy d oy
e (cos™'x) =2 e (sec™ 'x) a1
&gy 1 a g __1
& WA= s g A S =y
. _ eF - 1
sinh x = 2 csch x = S
X o g 1
cosh x = ) sech x = cosh x
sinh x cosh x
tanh x = i & coth x = sinh x
d . d
& sinh x = cosh x o csch x = —csch x coth x
% cosh x = sinh x dix sech x = —sech x tanh x
% tanh x = sechZx % coth x = —csch?x




