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PREFACE

To the First Edition

“I understand mathematics but I just can’t do proofs.”

Our experience has led us to believe that the remark above, though contradic-
tory, expresses the frustration many students feel as they pass from beginning calcu-
lus to a more rigorous level of mathematics. This book developed from a series of
lecture notes for a course at Central Michigan University that was designed to ad-
dress this lament. The text is intended to bridge the gap between calculus and ad-
vanced courses in at least three ways. First, it provides a firm foundation in the major
ideas needed for continued work. Second, it guides students to think and to express
themselves mathematically—to analyze a situation, extract pertinent facts, and draw
appropriate conclusions. Finally, we present introductions to modern algebra and
analysis in sufficient depth to capture some of their spirit and characteristics.

We begin in Chapter | with a study of the logic required by mathematical ar-
guments, discussing not formal logic but rather the standard methods of mathemat-
ical proof and their validity. Methods of proof are examined in detail, and examples
of each method are analyzed carefully. Denials are given special attention, particu-
larly those involving quantifiers. Techniques of proof given in this chapter are used
and referred to later in the text. Although the chapter was written with the idea that
it may be assigned as out-of-class reading, we find that most students benefit from
a thorough study of logic.

Much of the material in Chapters 2, 3, and 4 on sets, relations, and functions
will be familiar to the student. Thus, the emphasis is on enhancing the student’s
ability to write and understand proofs. The pace is deliberate. The rigorous ap-
proach requires the student to deal precisely with these concepts.

Chapters 5, 6, and 7 make use of the skills and techniques the student has ac-
quired in Chapters 1 through 4. These last three chapters are a cut above the earlier
chapters in terms of level and rigor. Chapters | through 4 and any one of Chapters
5, 6, or 7 provide sufficient material for a one-semester course. An alternative is to
choose among topics by selecting, for example, the first two sections of Chapter 5,
the first three sections of Chapter 6, and the first two sections of Chapter 7.
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Chapter 5 begins the study of cardinality by examining the properties of finite
and infinite sets and establishing countability or uncountability for the familiar
number systems. The emphasis is on a working knowledge of cardinality—particu-
larly countable sets, the ordering of cardinal numbers, and applications of the Can-
tor-Schroeder—Bernstein Theorem. We include a brief discussion of the Axiom of
Choice and relate it to the comparability of cardinals.

Chapter 6, which introduces modern algebra, concentrates on the concept of a
group and culminates in the Fundamental Theorem of Group Homomorphisms. The
idea of an operation preserving map is introduced early and developed throughout
the section. Permutation groups, cyclic groups, and modular arithmetic are among
the examples of groups presented.

Chapter 7 begins with a description of the real numbers as a complete ordered
field. We continue with the Heine—Borel Theorem, the Bolzano—Weierstrass Theo-
rem, and the Bounded Monotone Sequence Theorem (each for the real number sys-
tem), and then return to the concept of completeness.

Exercises marked with a solid star (%) have complete answers at the back of the
text. Open stars (77) indicate that a hint or a partial answer is provided. “Proofs to
Grade™ are a special feature of most of the exercise sets. We present a list of claims
with alleged proofs, and the student is asked to assign a letter grade to each “proof™
and to justify the grade assigned. Spurious proofs are usually built around a single
type of error, which may involve a mistake in logic, a common misunderstanding of
the concepts being studied, or an incorrect symbolic argument. Correct proofs may
be straightforward, or they may present novel or alternate approaches. We have
found these exercises valuable because they reemphasize the theorems and coun-
terexamples in the text and also provide the student with an experience similar to
grading papers. Thus, the student becomes aware of the variety of possible errors
and develops the ability to read proofs critically.

In summary, our main goals in this text are to improve the student’s ability to
think and write in a mature mathematical fashion and to provide a solid under-
standing of the material most useful for advanced courses. Student readers, take
comfort from the fact that we do not aim to turn you into theorem-proving wizards.
Few of you will become research mathematicians. Nevertheless, in almost any
mathematically related work you may do, the kind of reasoning you need to be able
to do is the same reasoning you use in proving theorems. You must first understand
exactly what you want to prove (verify, show, or explain), and you must be familiar
with the logical steps that allow you to get from the hypothesis to the conclusion.
Moreover, a proof is the ultimate test of your understanding of the subject matter
and of mathematical reasoning.

We are grateful to the many students who endured earlier versions of the man-
uscript and gleefully pointed out misprints. We acknowledge also the helpful com-
ments of Edwin H. Kaufman, Melvin Nyman, Mary R. Wardrop, and especially
Douglas W. Nance, who saw the need for a course of this kind at CMU and did a su-
perb job of reviewing the manuscript.

We thank our reviewers: William Ballard of the University of Montana, Sher-
ralyn Craven of Central Missouri State University, Robert Dean of Stephen F.
Austin State University, Harvey Elder of Murray State University, Hoseph H. Op-
penheim of San Francisco State University, Joseph Teeters of the University of
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Wisconsin, Dale Schoenefeld of the University of Tulsa, Kenneth Slonnegar of
State University of New York at Fredonia, and Douglas Smith of University of the
Pacific. And we wish to thank Karen St. Andre for her superb and expeditious typ-
ing of the manuscript.

To the Fourth Edition

The intent of this edition is to continue the evolution of the text as an introduction
to both foundational topics of logic, sets, relations, and functions and to the rigor of
mathematical thinking and writing. Each edition has brought improvements
through incorporation of many valuable suggestions from reviewers, instructors,
and students. We are grateful for the responses we have received.

For previous editions we found that many instructors followed the develop-
ment of the text, covering most of Chapters 1 through 4, much of the treatment of
cardinality in Chapter 5, and, as time permits, topics from Chapter 6 or 7. One com-
mon approach to Chapter 5 has been to treat the definitions and results of the first
two sections on finite and infinite sets, then Cantor’s Theorem and facts about
countable sets. This approach has been facilitated by gathering countability results
in Section 5.3 and shifting the Axiom of Choice to the end of the chapter.

New and revised explanations, examples, and exercises appear throughout this
edition of the text. This is especially so for Chapter 1., which continues to receive
our greatest attention as we strive to provide allowance for variance in instructor
preferences. A sixth section has been added to Chapter 1, providing additional ex-
amples of proofs. There is a new section on orders and partial orderings in Chapter
2. Discussions of real analysis concepts in Chapter 7 are tied more closely to stu-
dents’ experience in calculus. An accompanying instructor’s manual by Kurt Fried-
man and Greg Perkins is available to adopters of the text.

We would like to thank our reviewers for the second and third editions:
Mangho Ahuja, Southeast Missouri State University; David Barnette, University of
California at Davis; Harry Coonce, Mankato State University; Michael J. Evans,
North Carolina State University; Benjamin Freed, Clarion University of Pennsylva-
nia; Robert Gamble, Winthrop College; Dennis Garity, Oregon State University;
Robert P. Hunter, Pennsylvania State University:; Jack Johnson, Brigham Young
University—Hawaii; Daniel Kocan, State University of New York, Potsdam; James
McKinney, California State Polytechnic University; Yves Nievergelt, Eastern
Washington University; Victor Schneider, University of Southwestern Louisiana;
and Lawrence Williams, University of Texas, San Antonio.

We also thank our reviewers for this fourth edition: Gerald Beer, California
State University—Los Angeles; Ron Dotzel, University of Missouri; Gerald Farrell,
Cal Poly—San Luis Obispo; and Andrew Martin, Morehead State University. We
also thank Gary Ostedt, Nancy Shammas, Kelly Shoemaker, Lisa Torri, and every-
one else involved at Brooks/Cole as well as Barbara Kimmel, our manuscript edi-
tor, for their professional work and friendly encouragement.

Richard St. Andre
Douglas Smith
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CHAPTER 1

Logic and Proofs

Although mathematics is both a science and an art, special characteristics distinguish
mathematics from the humanities and from other sciences. Particularly important is
the kind of reasoning that typifies mathematics. The natural or social scientist gener-
ally makes observations of particular cases or phenomena and seeks a general theory
that describes or explains the observations. This approach is called inductive reason-
ing, and it is tested by making further observations. If the results are incompatible
with theoretical expectations, the scientist usually must reject or modify the theory.

Mathematicians, too, frequently use inductive reasoning as they attempt to de-
scribe patterns and relationships among quantities and structures. The characteristic
thinking of the mathematician, however, is deductive reasoning, in which one uses
logic to draw conclusions based on statements accepted as true. The conclusions of
a mathematician are proved to be true, provided that the assumptions are true. 1f the
results of a mathematical theory are deemed incompatible with some portion of re-
ality, the fault lies not in the theory but with the assumptions about reality that make
the theory inapplicable to that portion of reality. Indeed, the mathematician is not
restricted to the study of observable phenomena, even though one can trace the de-
velopment of mathematics back to the need to describe spatial relations (geometry)
and motion (calculus) or to solve financial problems (algebra). Using logic, the
mathematician can draw conclusions about any mathematical structure imaginable.

The goal of this chapter is to provide a working knowledge of the basics of
logic and the idea of proof, which are fundamental to deductive reasoning. This
knowledge is important in many areas other than mathematics. For example, the
thought processes used to construct an algorithm for a computer program are much
like those used to develop the proof of a theorem.

1.1

Propositions and Connectives

Natural languages such as English allow for many types of sentences. Some
sentences are interrogatory (Where is my sweater?), others exclamatory (Oh, no!),
and others have a definite sense of truth to them (Abe Lincoln was the first U.S. pres-

1
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ident). A proposition is a sentence that is either true or false. Thus a proposition has
exactly one truth value: true, which we denote by T, or false, which we denote by F.
Some examples of propositions are:

(a) \/5 is irrational.

b)) 1+1=5.

(c) The elephant will become extinct on the planet Earth before the rhinoceros will.
(d)  Julius Caesar had two eggs for breakfast on his tenth birthday.

We are not concerned here with the difficulty of establishing the actual truth
value of a proposition. We readily see that proposition (a) has the value T while (b)
has the value F. It may take many years to determine whether proposition (c) is true
or false, but its truth value will certainly be established if either animal ever be-
comes extinct. If both species (and Earth) somehow survive forever, the statement
is false. There may be no way ever to determine what value proposition (d) has.
Nevertheless, each of the above is either true or false, hence is a proposition.

Here are some sentences that are not propositions:

(e)  Whatdid you say?
(f) x?=36.
(g)  This sentence is false.

Sentence (e) is an interrogative statement that has no truth value. Sentence (f)
could be true or false depending on what value x is assigned. We shall study sen-
tences of this type in section 1.3.

Statement (g) is an example of a sentence that is neither true nor false, and it is
referred to as a paradox. If (g) is true, then by its meaning (g) must be false. On the
other hand, if (g) is false, then what it purports is false, so (g) must be true. Thus, (g)
can have neither T nor F for truth value. The study of paradoxes such as this has
played a key role in the development of modern mathematical logic. A famous ex-
ample of a paradox formulated by the English logician Bertrand Russell is dis-
cussed in section 2.1.

Propositions (a)—(d) are simple or atomic in the sense that they do not have any
other propositions as components. Compound propositions can be formed by using
logical connectives with simple propositions.

DEFINITIONS Given propositions P and Q,

The conjunction of P and Q, denoted P A Q, is the proposition “P and Q.”
P A Qs true exactly when both P and Q are true.

The disjunction of P and Q, denoted P V Q, is the proposition “P or Q.”
PV Q is true exactly when at least one of P or Q is true.

The negation of P, denoted ~P, is the proposition “not P.” ~P is true ex-
actly when P is false.

If Pis 1 # 3” and Q is “7 is odd,” then

PAQis*“l #3and 7 is odd.”
PV Qis“l #3 or7isodd.”
~Q is “Itis not the case that 7 is odd.”
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Since in this example both P and Q are true, P A Q and P V Q are true, while ~Q is
false.
All of the following are true propositions:

“It is not the case that \/T() >4

“/2 < /3 or chickens have lips.”

“Venus is smaller than Earthor 1 +4 =15."
“6<<7and7 <8.”

All of the following are false:

“Mozart was born in Salzburg and 7 is rational.”
“It is not the case that 10 is divisible by 2.”
“2% = 16 and a quart is larger than a liter.”

Other connectives commonly used in English are but, while, and although,
each of which would normally be translated symbolically with the conjunction con-
nective. A variant of the connective or is discussed in the exercises.

Example. Let M be “Milk contains calcium” and / be “Italy is a continent.” Since
M has the value T and 7 has the value F,

“Italy is a continent and milk contains calcium,” symbolized I A M, is false;
“Italy is a continent or milk contains calcium,” / V M, is true;
“It is not the case that Italy is a continent,” ~/, is true.

An important distinction must be made between a proposition and the form of
a proposition. In the previous example, “Italy is a continent and milk contains cal-
cium” is a proposition with a single truth value (F), while the propositional form
P A Q, which may be used to represent the sentence symbolically, has no truth
value. The form P A Q is an expression that obtains a value T or F after specific
propositions are designated for P and Q (when for instance, we let P be “Italy is a
continent” and Q be “Milk contains calcium”), or when the symbols P and Q are
given truth values.

By the form of a compound proposition, we mean how the proposition is put
together using logical connectives. For components P and Q, P AQ and P V Q are
two different propositional forms. Informally, a propositional form is an ex-
pression involving finitely many logical symbols (such as A and ~) and letters.
Expressions that are single letters or are formed correctly from the definitions of
connectives are called well-formed formulas. For example, (P A(QV ~Q)) is
well-formed, whereas (P V O~), (~P ~ Q), and VQ are not. A more precise defin-
ition and study of well-formed formulas may be found in Elliot Mendelson’s An In-
troduction to Mathematical Logic (New York, Chapman & Hall, 1987).

The truth values of a compound propositional form are readily obtained by ex-
hibiting all possible combinations of the truth values for its components in a truth
table. Since the connectives A and V involve two components, their truth tables
must list the four possible combinations of the truth values of those components.
The truth tables for P AQ and P V Q are '
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P 0 PAQ P 0 PVQ
T T T T T T
F T F F T T
T F F T F T
F F F F F F

Since the value of ~P depends only on the two possible values for P, its truth table is

P ~P
T F
F T

Frequently you will encounter compound propositions with more than two
simple components. The propositional form (P A Q) V ~R has three simple compo-
nents P, Q, and R; it follows that there are 2* = 8 possible combinations of truth val-
ues. The two main components are P A Q and ~R. We make truth tables for these
and combine them by using the truth table for V.

P 0 R PAQ ~R (PAQ)V ~R
T T T 7 F i)
F gy T F F F
T F T F F F
F F T F F F
T T F T T T
F i F F T T
T F F F T T
F F F F T i)

The propositional form (~Q V P) A(RV S) has 16 possible combinations of
values for P, O, R, S. Two main components are ~Q V P and R V §. Its truth table
is shown here:

~QVP RVS (~QVP)ARVS)

Q
{
Q

T

TETHTST S TS T ST STS | S
TTHHATTES ST TS ST TS~
THTmTHAASA4mm TS99 | o
el il B R B R R R R e e R R R
N—amTmHa-STTHS-STTmSSTT
HHTHSSTSSSTSS5T
R R e e e e R R =
mTHTTHSTSHSSmS53T
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Two propositions P and Q are equivalent if and only if they have the same
truth value. The propositions 1 + | = 2" and “6 < 10™ are equivalent (even though
they have nothing to do with each other) because both are true. The ability to write
equivalent statements from a given statement is an important skill in writing proofs.
Of course, in a proof we expect some logical connection between such statements.
This connection may be based on the form of the propositions.

DEFINITION Two propositional forms are equivalent if and only if
they have the same truth tables.

For example, the propositional forms PV (Q AP) and P are equivalent. To
show this, we examine their truth tables.

P 0 QAP PV(QAP)
T i) T T
F T F F
T F F T
F F F F

Since the P column and the P V (Q A P) column are identical, the propositional forms
are equivalent. This means that, whatever propositions we choose to use for P and for
Q, the results will be equivalent. If we let P be “91 is prime™ and Q be 1 + 1 = 2"
then “91 is prime™ is equivalent to the proposition “91 is prime, or | + 1 = 2 and 91
is prime.” With these propositions for P and Q, Q is true and both Pand P V (Q A P)
are false. Thus, we have an instance of the second line of the truth table.

Notice that “Two propositions are equivalent™ has a different meaning from
“Two propositional forms are equivalent.” We don’t look at truth tables to decide the
equivalence of propositions, because a proposition has only one truth value. This
makes the question of equivalence of propositions rather easy: all true propositions
are equivalent to each other and all false propositions are equivalent to each other.
On the other hand, propositional forms are neither true nor false; generally they have
the value true for some assignments of truth values to their components and the value
false for other assignments. Thus to decide equivalence of propositional forms, we
must compare truth tables. Another example of equivalent propositional forms is P
and ~(~P). The truth tables for these two propositional forms are shown:

P ~P ~(~P)
T F T
F T F

DEFINITION A denial of a proposition S is any proposition equiva-
lent to ~S.
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By definition, the negation ~P is a denial of the proposition P, but a denial
need not be the negation. A proposition has only one negation but many different
denials. The ability to rewrite the negation of a proposition into a useful denial will
be very important for writing indirect proofs (see section 1.4).

Example. The proposition P: “z is rational” has negation ~P: “It is not the case
that 7 is rational.” Some useful denials are

“m is irrational.”
“z is not the quotient of two integers.”
“The decimal expansion of 7 is not repeating.”

Note that since P is false, all denials of P are true.

Example. The proposition “The water is cold and the soap is not here” has two
components, C: “The water is cold” and H: “The soap is here.” The negation,
~(C A ~H), is “It is not the case that the water is cold and the soap is not here.”
Some other denials are

“Either the water is not cold or the soap is here.”
“It is not the case that the water is cold and the soap is not here and the water is
cold.”

It may be verified by truth tables that the propositional forms (~C)V H and
~[(C A~H) A C] are equivalent to ~(C A ~H).

Note that the negation in the last example is ambiguous when written in Eng-
lish. Does the “It is not the case” refer to the entire sentence or just to the compo-
nent “The water is cold”? Ambiguities such as this are allowable in conversational
English but can cause trouble in mathematics. To avoid ambiguities, we introduce
delimiters such as parentheses ( ), square brackets [ |, and braces { }. The negation
above may be written symbolically as ~(C A ~H).

To avoid writing large numbers of parentheses, we use the rule that, first, ~ ap-
plies to the smallest proposition following it, then A connects the smallest proposi-
tions surrounding it, and, finally, V connects the smallest propositions surrounding
it. Thus, ~P Vv Q is an abbreviation for (~P) V Q. The negation of the disjunction
PV Q must be written with parentheses ~(P Vv Q). The propositional form
P A~QV R abbreviates [P A (~Q)] V R. As further examples,

PV Q AR abbreviates PV [Q AR].
PV ~QV ~R abbreviates [P V (~Q)] V (~R).
~P VvV ~Q abbreviates (~P) V (~0).

When the same connective is used several times in succession, parentheses
may also be omitted. We reinsert parentheses from the left, so that PV Q VR is
really (P V Q) V R. For example, R AP A ~P A Q abbreviates [(R A P) A(~P)] AQ,
whereas R V P A ~P V Q, which does not use the same connective consecutively, ab-
breviates (R V [P A (~P)]) V Q. Leaving out parentheses is not required; some propo-
sitional forms are easier to read with a few well-chosen “unnecessary” parentheses.
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Some compound propositional forms always yield the value true just be-
cause of the nature of their form. Tautologies are propositional forms that are
true for every assignment of truth values to their components. Thus a tautology
will have the value true regardless of what proposition(s) we select for the com-
ponents. For example, the Law of Excluded Middle, P V ~P, is a tautology. Its
truth table is

P ~P Pv~P
T F T
F T T

We know that “the ball is red or the ball is not red” is true because it has the form of
the Law of Excluded Middle.

Example. Show that (PV Q) V (~P A ~Q) is a tautology. We see that the truth
table for the propositional form is

P 0 PVQ ~P ~Q ~PA~Q (PVQ)V(~PA~Q)
T T T F F F T
F T T T F F T
T F T F T F T
F F F T T i T

Thus (P V Q) V (~P A~Q) is a tautology.

A contradiction is the negation of a tautology. Thus ~(P V ~P) is a contra-
diction. The negation of a contradiction is, of course, a tautology.

Conjunction, disjunction, and negation are very important in mathematics. Two
other important connectives, the conditional and biconditional, will be studied in the
next section. Other connectives having two components are not as useful in mathe-
matics, but some are extremely important in digital computer circuit design.

Exercises 1.1

1. Which of the following are propositions?
(a) Where are my car keys?
(b) Christopher Columbus wore red boots at least once.
* (¢) The national debt of Poland in 1938 was $2,473,596.38.

d) x*=20
* (e) Between January 1, 2205 and January 1, 2215, the population of the world
will double.

(f) There are no zeros in the decimal expansion of 7.
* (g) She works in New York City.
(h) Keep your elbows off the table!
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(i) There are more than 3 false statements in this book and this statement is
one of them.

(j) There are more than 3 false statements in this book and this statement is
not one of them.

Make truth tables for each of the following propositional forms.

(a) PA~P (b) PV~P

(©0 PAQVR) (d (PAQ)V(PAR)

(e) PA~Q (f) PAQQV~0

(g8 (PAQV~0 (h) ~(PAQ)

i (PV~O)AR J) ~PA~Q

(k) PAP @M PAQV(RA~S)
Which of the following pairs of propositional forms are equivalent?
(@) PAP,P (b) PVPP

(¢) PAQ, QAP d PVQQV~P

() (PAQAR,PA(QAR) (f) ~PAQD),~PA~Q
(8 ~PA~Q.~(PA~Q) (h) (PVOVRPV(QVRER)
(i) (PAQVR,PAQVR) (J) ~PVO,(~P)A(~0Q)
(k) ~(PAQ),(~P)V(~0) M (PAQVRPV(QAR)

(m) PA(QVR),(PAQ)V(PAR) (m) (~P)V(~0Q),~(PV ~Q)
If P, O, and R are true while S and T are false, which of the following are true?

(@ QARAS) (b) OV I(RAS)

() (PVOIARVS) @ (~P)V(~Q)V({(~R)V(~9))
(e) (~P)V(QA~0Q) () (~P)V(~Q)

® (~QVIHAWQVS) (h) (SAR)V(SAT)

i (PVS)APVT) (J) (=T)AP)V(T AP)

(k) (~P)A(@QV~Q) M (=R)A(=S)

Give a useful denial of each statement.

(a) xisapositive integer. (Assume that x is some fixed integer.)

(b) We will win the first game or the second one.

(¢) 5=3

(d) 641,371 is a composite integer.

(e) Roses are red and violets are blue.

(f) x<yorm?<1 (Assume that x, y, and m are fixed real numbers.)

(g) Tisnotgreenor 7Tis yellow.

(h) Sue will choose yogurt but will not choose ice cream.

(i) nisevenand nis nota multiple of 5. (Assume that # is a fixed integer.)

P, Q, and R are propositional forms, and P is equivalent to Q, and Q is equiv-
alent to R. Prove that

(a) Qisequivalentto P. (b) Pisequivalentto R.

(¢) ~Qisequivalentto ~P. (d) P AQisequivalentto Q AR.

(e) PV Qisequivalentto QV R.

Use A: “Horses have four legs,” B: “17 is prime,” and C: “Three quarters equal
one dollar” to write the propositional form of each of the following. Decide
which are true.

(a) Either horses have four legs or 17 is not prime.

(b) Neither do three quarters equal a dollar nor do horses have four legs.
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* (¢) 17 is prime and three quarters do not equal one dollar.
(d) Horses have four legs but three quarters do not equal one dollar.

8. Let P be the sentence “Q is true” and Q be the sentence “P is false.” Is P a
proposition? Explain.

9. The word or is used in two different ways in English. We have presented the
truth table for Vv, the inclusive or, whose meaning is “one or the other or
both.” The exclusive or, meaning “one or the other but not both™ and denoted
©, has its uses in English, as in “She will marry Heckle or she will marry
Jeckle.” The “inclusive or’”” is much more useful in mathematics and is the ac-
cepted meaning unless there is a statement to the contrary.

* (a) Make a truth table for the “exclusive or” connective, @.

(b) Show that A® B is equivalent to (A V B) A ~(A AB).

10. Determine whether each of the following is a tautology, a contradiction, or

neither. Prove your answers.
@ (PAQ)V((~P)A(~Q))
(b) ~(PA~P)

* () (PAQV((~P)V(~Q))
(d (AAB)V(AA~B)V ((—~A)AB)V ((~A) A(~B))
(e) (QA~P)A~(PAR)
() PVI(~QAP)ARYV Q)

1.2

Conditionals and Biconditionals

The most important kind of proposition in mathematics is a sentence of the form “If
P, then Q.” Examples include “If a natural number is written in two ways as a prod-
uct of primes, then the two factorizations are identical except for the order in which
the prime factors are written”; “If two lines in a plane have the same slope, then they
are parallel”; and “If f is differentiable at x, and f'(x,) is a relative minimum for f,
then f'(xy) = 0.”

DEFINITIONS  Given propositions P and Q, the conditional sentence
P = Q (read “P implies Q7) is the proposition “If P, then Q.” The propo-
sition P is the antecedent and Q is the consequent.

The conditional sentence P = Q is true whenever the antecedent is
false or the consequent is true. Thus, P = Q is defined to be equivalent to

(~P)V Q.

The truth table for P = Q'is

P (antecedent) Q (consequent) P

T
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