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A unique mouse model of multiple myeloma (MM), namely ST2MM-bearing mouse,
was useful for elucidating the pathophysiological mechanisms underlying the disease.
Increased accumulation of suppressive CD4*CD2 58" Foxp3™ regulatory T cells (Tregs)
was observed in the thymus and lymphoid peripheral organs during disease progression.
Adoptive transfer of Tregs, but not other thymocytes, from ST2ZMM-bearing mice led to
increased progression of disease manifestations in young syngeneic mice. Depletion of
Tregs, a proposed strategy in cancer immunotherapy, was tested using cyclophosphamide
(CYC), an alkylating agent with selective cytotoxicity. Both low- and high-dose CYC,
administered to sick mice with hind limb paralysis, caused the paralysis to disappear, the
plasma tumor cells in the bone marrow (BM) cavity to be replaced by normal cell
populations, and the survival of the mice to be significantly prolonged. Low-dose
CYC, which selectively depletes Tregs, decreased MM incidence, in contrast to high-
dose CYC, which was generally cytotoxic, and did not reduce MM incidence.
In contrast, low-dose CYC induced Tregs to become susceptible to apoptosis by down-
regulating Bcl-xL and CTLA-4 in these cells, and by decreasing the production of IL-2 by
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effector CD4 cells. This treatment consequently triggered the recovery of IFN-y-producing
natural killer T cells and the maturation of dendritic cells. Transient gradual depletion of
Tregs in low-dose CYC-treated ST2MM mice was maintained beyond 45 days. Thus, less
frequent injections of low-dose CYC enabled us to recruit compatible immune-derived cells
that would reduce tumor load and delay or prevent tumor recurrence, hence breaking
immune tolerance toward MM tumor cells. © 2010 Elsevier Inc.

I. INTRODUCTION

Multiple myeloma (MM) is a progressive B-lineage neoplasia characterized
by proliferation of clonal malignant plasma cells in the bone marrow (BM).
The tumor cells secrete an immunoglobulin, usually monoclonal IgE or IgA in
the serum and/or light chains in the urine. The progression of the disease may
include anemia, lytic bone lesions, renal dysfunction, hypercalcemia, hypo-
gammaglobulinemia, and peripheral neuropathy. Immune dysfunction is an
important feature of the disease and leads to infections that are a major cause
of morbidity and mortality. Moreover, it may promote tumor growth and
resistance to chemotherapy. MM is characterized by numerous defects in the
immune system including impaired lymphocyte functions, steroid-related
immunosuppression, and neutropenia secondary to chemotherapy (Bergsagel
and Kuehl, 2005). A reduced level of polyclonal immunoglobulins is a consis-
tent feature of active MM, reflecting the suppression of CD19" B lymphocytes
that correlate inversely with the disease stage (Rawstron et al., 1998). The
relationship between myeloma plasma cells and the BM microenvironment is
critical for maintaining the disease. Tumor cells and stromal cells interact via
adhesion molecules and cytokine networks to simultaneously promote tumor
cell survival, drug resistance, angiogenesis, and disordered bone metabolism.
In addition, a number of immunologically active compounds are increased
including transforming growth factor (TGF)-3, interleukin (IL)-10, IL-6,
vascular endothelial growth factor (VEGF), Fas ligand, Mucin 1 (MUC-1),
Cyclooxygenase (COX)-2, and related prostanoids and metalloproteinases
(Pratt et al., 2007).

Various drugs having immunomodulatory effects have been used in MM
treatment. Thalidomide, shown to have potent anti-inflammatory, antiangio-
genic, and immunomodulatory properties, was reported to have anti-MM
activity as well (Bartlett et al., 2004; Rajkumar et al., 2002; Singhal et al.,
1999). Lenalidomine is another immunomodulatory drug used recently
(Richardson et al., 2006) in a NKT cell target combinatorial immunotherapy
approach (Chang et al., 2006).

Animal models mimicking human MM are useful for better understanding
the pathophysiological mechanisms involved in the progression of the dis-
ease and for developing new therapeutic strategies. A series of murine
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models were described by Radl et al. (1988), in which MM arose spontane-
ously in aging mice of the C57BL/KaLwRjj strain with a frequency of 0.5%.
A series of tumors have been propagated iz vivo by intravenous transfer of
the diseased BM into young syngeneic mice. This series of MM tumors
represents the human form of the disease since their clinical characteristics
involve selective localization in the BM, serum M component, angiogenesis,
and adhesion and chemokine profiles that are similar to human myeloma
(Asosingh et al., 2000; Vanderkerken et al., 1997). The BM microenviron-
ment consists of extracellular matrix protein and BM stromal cells,
osteoblasts, and osteoclasts that play a crucial role in the pathogenesis of
MM cell growth and survival (Hideshima ez al., 2007).

T cell tolerance to tumor-associated antigens plays a significant role in
immune evasion by tumors (Drake et al., 2006; Zou, 2006). Naturally
occurring and adaptive regulatory T cells (Tregs) are anergic cells with
suppressive capabilities that constitute 5-10% of CD4 cells. These cells
are induced early during tumor development and were shown to contribute
to tumor tolerance (Peng et al., 2002; Zhou and Levitsky, 2007). The
mechanisms underlying these effects include inhibiting the activity of a
variety of immune cells that are tumor specific such as effector CD4 cells,
CD8 cells, dendritic cells (DCs), natural killer (NK) cells, natural killer T
(NKT) cells, and B cells (Chen et al., 2005; Ghiringhelli ez al., 2006; Lim
et al., 2005; Nishikawa et al., 2005; Piccirillo and Shevach, 2001; Thornton
and Shevach, 1998; Turk et al., 2004). Phenotypically, these suppressor cells
are characterized by their expression of certain surface and intracellular
molecules, which include the following: the IL-2 receptor alpha chain (e.g.,
CD25), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), and gluco-
corticoid-induced TNFR-related protein (GITR). Recently, the lack of
CD127 expression was shown to predict functional Tregs in normal humans
(Liu et al., 2006), but it is relatively unstudied in tumor Tregs. The transcrip-
tion factor Forkhead-box-p3 (Foxp3) is a more specific marker of Tregs
(Hori et al., 2003). Recently, it was demonstrated that Bcl-xL plays a
role in the induction and suppressive function of Tregs, in addition to its
antiapoptotic effect (Sharabi et al., 2009).

The presence of Tregs in tumors is associated with a poor prognosis (Curiel
et al., 2004). Patients with many different types of cancers had increased
numbers of Tregs in their blood, tumor mass, and draining lymph nodes.
Increased numbers of Tregs in lung and ovarian cancers were first reported by
Woo et al. (2001). Later it was demonstrated that high frequencies of Tregs
are allocated not only at the proximity of tumors but also in peripheral blood,
thus suggesting that an increased number of Tregs is a generalized phenome-
non (Liyanage et al., 2002). It is thought that active proliferation of Tregs
rather than redistribution from other compartments is responsible for the
tumor-associated increase in the numbers of Tregs (Wolf et al., 2006).
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Increased numbers of Tregs were found in patients with MM as well (Beyer
and Schultze, 2006; Beyer et al., 2006; Feyler et al., 2009). Interestingly,
in vitro expansion of Tregs could be induced in the presence of MM-specific
antigens (Han et al., 2008). The increased number of Tregs was associated
with reduced immune effector functions (Han et al., 2008), and was sugges-
tive of the progression of malignant transformation (Beyer et al., 2006).

Therapeutic approaches for breaking tolerance to tumor cells have been
tried; the depletion of Tregs is the most studied strategy (Ercolini et al.,
2005; Ghiringhelli et al., 2004; Shimizu et al., 1999). Specific depletion of
Tregs by anti-CD25 antibodies improved endogenous immune-mediated
tumor rejection (Shimizu et al., 1999) by enabling the development of
tumor-specific CD8 cells and NK cells that reacted against tumors
(Shimizu et al., 1999). Nevertheless, despite the tumor antigen-specific
immunity (Tanaka et al., 2002), the tumors were not completely rejected
(Jones et al., 2002). Cyclophosphamide (CYC) was found to have specific
effects on T cells, with tumor-inhibiting properties (Proietti et al., 1998).
This alkylating agent was shown to have beneficial effects in the treatment of
MM, and to be associated with increased survival rates (Rivers et al., 1963).
It was reported that the beneficial effects of CYC were due to the removal of
suppressor T cells rather than to the reduction in tumor burden (McCune
et al., 1998).

The use of various doses of CYC for depleting Tregs in different types
of solid tumors has been reported. In this regard, low doses of CYC had
a specific effect in depleting Tregs (Awwad and North, 1989; Ghiringhelli
et al., 2004). High-dose CYC also depleted Tregs but was less effective
than the low-dose CYC in rejecting the tumor (Castano et al., 2008).
Thus, apparently the beneficial effects of low-dose CYC on tumor rejec-
tion may predominantly be immune mediated and less cytotoxic
mediated. Indeed, the resulting depletion of Tregs by low-dose CYC
augmented the immune response to cancer immunotherapy (Machiels
et al., 2001), unlike the high-dose CYC, which caused general immune
cell depletion, and as a consequence, the concomitant depletion of CD4
cells and CD8 effector T cells that are required for developing an
effective antitumor immunity (Castano et al., 2008). Further, low-dose
CYC inhibited angiogenesis and vasculogenesis (Kerbel and Kamen,
2004), and impeded tumor cell repopulation kinetics (Wu and Tannock,
2003). In agreement, mathematical analysis of the evolutionary dynamics
of tumor populations predicted that the control of tumors by chemother-
apy could be achieved using progressively lower doses and increasingly
long intervals between doses (Gatenby et al., 2009). Hence, it is sug-
gested that a desirable effect of a chemotherapeutic compound would
result in a tumor volume that is either stable or slowly increases for a
prolonged period of time.



