A Practical Approach to

Signals and Systems

D. Sundararajan

Companion Website

A PRACTICAL APPROACH TO SIGNALS AND SYSTEMS

D. Sundararajan

John Wiley & Sons (Asia) Pte Ltd

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the Publisher, John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01, Singapore 129809, tel: 65-64632400, fax: 65-64646912, email: enquiry@wiley.com.sg

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All trademarks referred to in the text of this publication are the property of their respective owners.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Sundararajan, D.

Practical approach to signals and systems / D. Sundararajan.

p. cm

Includes bibliographical references and index.

ISBN 978-0-470-82353-8 (cloth)

1. Signal theory (Telecommunication) 2. Signal processing. 3. System analysis. I. Title.

TKTK5102.9.S796 2008

621.382'23-dc22

2008012023

ISBN 978-0-470-82353-8 (HB)

Typeset in 11/13pt Times by Thomson Digital, Noida, India.

Printed and bound in Singapore by Markono Print Media Pte Ltd, Singapore.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

A PRACTICAL APPROACH TO SIGNALS AND SYSTEMS

Preface

The increasing number of applications, requiring a knowledge of the theory of signals and systems, and the rapid developments in digital systems technology and fast numerical algorithms call for a change in the content and approach used in teaching the subject. I believe that a modern signals and systems course should emphasize the practical and computational aspects in presenting the basic theory. This approach to teaching the subject makes the student more effective in subsequent courses. In addition, students are exposed to practical and computational solutions that will be of use in their professional careers. This book is my attempt to adapt the theory of signals and systems to the use of computers as an efficient analysis tool.

A good knowledge of the fundamentals of the analysis of signals and systems is required to specialize in such areas as signal processing, communication, and control. As most of the practical signals are continuous functions of time, and since digital systems are mostly used to process them, the study of both continuous and discrete signals and systems is required. The primary objective of writing this book is to present the fundamentals of time-domain and frequency-domain methods of signal and linear time-invariant system analysis from a practical viewpoint. As discrete signals and systems are more often used in practice and their concepts are relatively easier to understand, for each topic, the discrete version is presented first, followed by the corresponding continuous version. Typical applications of the methods of analysis are also provided. Comprehensive coverage of the transform methods, and emphasis on practical methods of analysis and physical interpretation of the concepts are the key features of this book. The well-documented software, which is a supplement to this book and available on the website (www.wiley.com/go/sundararajan), greatly reduces much of the difficulty in understanding the concepts. Based on this software, a laboratory course can be tailored to suit individual course requirements.

This book is intended to be a textbook for a junior undergraduate level one-semester signals and systems course. This book will also be useful for self-study. Answers to selected exercises, marked *, are given at the end of the book. A Solutions manual and slides for instructors are also available on the website (www.wiley.com/go/sundararajan). I assume responsibility for any errors in this book and in the accompanying supplements, and would very much appreciate receiving readers' suggestions and pointing out any errors (email address: d_sundararajan@yahoo.com).

xiv Preface

I am grateful to my editor and his team at Wiley for their help and encouragement in completing this project. I thank my family and my friend Dr A. Pedar for their support during this endeavor.

D. Sundararajan

Abbreviations

dc: Constant

DFT: Discrete Fourier transform

DTFT: Discrete-time Fourier transform

FT: Fourier transform

FS: Fourier series

IDFT: Inverse discrete Fourier transform

Im: Imaginary part of a complex number or expression

LTI: Linear time-invariant

Re: Real part of a complex number or expression

ROC: Region of convergence

Pr	Preface					
Abbreviations						
1	Intr	oductio	1			
	1.1	The C	Organization of this Book	1		
2	Disc	Discrete Signals				
	2.1	Classi	ification of Signals	5 5		
		2.1.1	Continuous, Discrete and Digital Signals	5		
		2.1.2	Periodic and Aperiodic Signals	7		
		2.1.3		7		
		2.1.4	Even- and Odd-symmetric Signals	8		
		2.1.5	Causal and Noncausal Signals	10		
		2.1.6	Deterministic and Random Signals	10		
	2.2	Basic	Signals	11		
		2.2.1	Unit-impulse Signal	11		
		2.2.2	Unit-step Signal	12		
		2.2.3	Unit-ramp Signal	13		
		2.2.4	Sinusoids and Exponentials	13		
	2.3	Signa	l Operations	20		
		2.3.1	Time Shifting	21		
		2.3.2	Time Reversal	21		
		2.3.3	Time Scaling	22		
	2.4	Sumn	nary	23		
		Furthe	er Reading	23		
		Exerc	ises	23		
3	Con	tinuou	s Signals	29		
	3.1		ification of Signals	29		
		3.1.1	Continuous Signals	29		
		3.1.2	Periodic and Aperiodic Signals	30		
		3.1.3	Energy and Power Signals	31		

vi Contents

		3.1.4	Even- and Odd-symmetric Signals	31
		3.1.5	Causal and Noncausal Signals	33
	3.2	Basic	Signals	33
		3.2.1	Unit-step Signal	33
		3.2.2	Unit-impulse Signal	34
			Unit-ramp Signal	42
		3.2.4	Sinusoids	43
	3.3	Signal	Operations	45
		3.3.1	Time Shifting	45
		3.3.2	Time Reversal	46
		3.3.3	Time Scaling	47
	3.4	Summ	nary	48
		Furthe	er Reading	48
		Exerci	ises	48
4	Tim	e-doma	nin Analysis of Discrete Systems	53
	4.1	Differ	ence Equation Model	53
		4.1.1	System Response	55
		4.1.2	Impulse Response	58
		4.1.3	Characterization of Systems by their Responses to Impulse	
			and Unit-step Signals	60
	4.2	Classi	fication of Systems	61
		4.2.1	Linear and Nonlinear Systems	61
		4.2.2	Time-invariant and Time-varying Systems	62
		4.2.3	Causal and Noncausal Systems	63
		4.2.4	• •	64
		4.2.5	Inverse Systems	64
		4.2.6	Continuous and Discrete Systems	64
	4.3	Convo	olution–Summation Model	64
		4.3.1	Properties of Convolution–Summation	67
		4.3.2	The Difference Equation and Convolution-Summation	68
		4.3.3	Response to Complex Exponential Input	69
	4.4	Syster	n Stability	71
	4.5	Realiz	cation of Discrete Systems	72
		4.5.1	Decomposition of Higher-order Systems	73
		4.5.2	Feedback Systems	74
	4.6	Summ	nary	74
			er Reading	75
		Exerci	ises	75

5	Tim	e-doma	in Analysis of Continuous Systems	79
	5.1	Classi	fication of Systems	80
		5.1.1	Linear and Nonlinear Systems	80
		5.1.2	Time-invariant and Time-varying Systems	81
		5.1.3	Causal and Noncausal Systems	82
		5.1.4	Instantaneous and Dynamic Systems	83
		5.1.5	Lumped-parameter and Distributed-parameter Systems	83
		5.1.6	Inverse Systems	83
	5.2	Differe	ential Equation Model	83
	5.3	Convo	lution-integral Model	85
		5.3.1	Properties of the Convolution-integral	87
	5.4	Systen	n Response	88
		5.4.1	Impulse Response	88
		5.4.2	Response to Unit-step Input	89
		5.4.3	Characterization of Systems by their Responses to Impulse	
			and Unit-step Signals	91
		5.4.4	Response to Complex Exponential Input	92
	5.5		n Stability	93
	5.6	Realiz	ation of Continuous Systems	94
		5.6.1	Decomposition of Higher-order Systems	94
		5.6.2	Feedback Systems	95
	5.7	Summ		96
			r Reading	97
		Exerci	ses	97
6	The	Discret	e Fourier Transform	101
	6.1	The Ti	me-domain and the Frequency-domain	101
	6.2	Fourie	r Analysis	102
		6.2.1	Versions of Fourier Analysis	104
	6.3	The D	iscrete Fourier Transform	104
		6.3.1	The Approximation of Arbitrary Waveforms with a Finite	
			Number of Samples	104
		6.3.2	The DFT and the IDFT	105
		6.3.3	DFT of Some Basic Signals	107
	6.4		ties of the Discrete Fourier Transform	110
		6.4.1	Linearity	110
		6.4.2	Periodicity	110
		6.4.3	Circular Shift of a Sequence	110
		6.4.4	Circular Shift of a Spectrum	111
		6.4.5	Symmetry	111
		6.4.6	Circular Convolution of Time-domain Sequences	112

viii Contents

		6.4.7	Circular Convolution of Frequency-domain Sequences	113
		6.4.8	Parseval's Theorem	114
	6.5	~ ~	ations of the Discrete Fourier Transform	114
		6.5.1	Computation of the Linear Convolution Using the DFT	114
		6.5.2	Interpolation and Decimation	115
	6.6	Summa	•	119
			Reading	119
		Exercis	ses	119
7		rier Seri		123
	7.1	Fourier		123
		7.1.1	FS as the Limiting Case of the DFT	123
		7.1.2	The Compact Trigonometric Form of the FS	125
		7.1.3	The Trigonometric Form of the FS	126
		7.1.4	Periodicity of the FS	126
		7.1.5	Existence of the FS	126
		7.1.6	Gibbs Phenomenon	130
	7.2		ties of the Fourier Series	132
		7.2.1	Linearity	133
		7.2.2	Symmetry	133
		7.2.3	Time Shifting	135
		7.2.4	Frequency Shifting	135
		7.2.5	Convolution in the Time-domain	136
		7.2.6	Convolution in the Frequency-domain	137
		7.2.7	Duality	138
		7.2.8	Time Scaling	138
		7.2.9	Time Differentiation	139
		7.2.10	Time Integration	140
		7.2.11	Parseval's Theorem	140
	7.3	Approx	ximation of the Fourier Series	141
		7.3.1	Aliasing Effect	142
	7.4		ations of the Fourier Series	144
	7.5	Summa		145
		Further	r Reading	145
		Exercis	ses	145
8	The	Discret	e-time Fourier Transform	151
	8.1	The Di	screte-time Fourier Transform	151
		8.1.1	The DTFT as the Limiting Case of the DFT	151
		8.1.2	The Dual Relationship Between the DTFT and the FS	156
		8.1.3	The DTFT of a Discrete Periodic Signal	158
		8.1.4	Determination of the DFT from the DTFT	158

	8.2	Proper	ties of the Discrete-time Fourier Transform	159
		8.2.1	Linearity	159
		8.2.2	Time Shifting	159
		8.2.3	Frequency Shifting	160
		8.2.4	Convolution in the Time-domain	161
		8.2.5	Convolution in the Frequency-domain	162
		8.2.6	Symmetry	163
		8.2.7	Time Reversal	164
		8.2.8	Time Expansion	164
		8.2.9	Frequency-differentiation	166
		8.2.10	Difference	166
		8.2.11	Summation	167
		8.2.12	Parseval's Theorem and the Energy Transfer Function	168
	8.3	Approx	ximation of the Discrete-time Fourier Transform	168
		8.3.1	Approximation of the Inverse DTFT by the IDFT	170
	8.4	Applic	ations of the Discrete-time Fourier Transform	171
		8.4.1	Transfer Function and the System Response	171
		8.4.2	Digital Filter Design Using DTFT	174
		8.4.3	Digital Differentiator	174
		8.4.4	Hilbert Transform	175
	8.5	Summa	ary	178
		Further	r Reading	178
		Exercis	ses	178
9	The	Fourier	Transform	183
	9.1		ourier Transform	183
		9.1.1	The FT as a Limiting Case of the DTFT	183
		9.1.2	Existence of the FT	185
	9.2	Proper	ties of the Fourier Transform	190
		9.2.1	Linearity	190
		9.2.2	Duality	190
		9.2.3	Symmetry	191
		9.2.4	Time Shifting	192
		9.2.5	Frequency Shifting	192
		9.2.6	Convolution in the Time-domain	193
		9.2.7	Convolution in the Frequency-domain	194
		9.2.8	Conjugation	194
		9.2.9	Time Reversal	194
		9.2.10	Time Scaling	194
		9.2.11	Time-differentiation	195
		9.2.12	Time-integration	197

		9.2.13	Frequency-differentiation	198
		9.2.14	Parseval's Theorem and the Energy Transfer Function	198
	9.3	Fourier '	Transform of Mixed Classes of Signals	200
		9.3.1	The FT of a Continuous Periodic Signal	200
		9.3.2	Determination of the FS from the FT	202
		9.3.3	The FT of a Sampled Signal and the Aliasing Effect	203
		9.3.4	The FT of a Sampled Aperiodic Signal and the DTFT	206
		9.3.5	The FT of a Sampled Periodic Signal and the DFT	207
		9.3.6	Approximation of a Continuous Signal from its Sampled	209
	9.4	A	Version	209
			imation of the Fourier Transform	
	9.5	9.5.1	tions of the Fourier Transform	211 211
			Transfer Function and System Response	
		9.5.2	Ideal Filters and their Unrealizability	214
	0.6	9.5.3	Modulation and Demodulation	215
	9.6	Summar		219
		Further I Exercise		219
		Exercise	5	219
10		z-Transf		227
			Analysis and the z-Transform	227
		The <i>z</i> -Ti		228
	10.3		es of the <i>z</i> -Transform	232
		10.3.1	Linearity	232
		10.3.2	Left Shift of a Sequence	233
		10.3.3	Right Shift of a sequence	234
		10.3.4	Convolution	234
		10.3.5	Multiplication by <i>n</i>	235
		10.3.6	Multiplication by a^n	235
		10.3.7	Summation	236
		10.3.8	Initial Value	236
		10.3.9	Final Value	237
	LOT TON		Transform of Semiperiodic Functions	237
	10.4		erse z-Transform	237
		10.4.1	Finding the Inverse z-Transform	238
	10.5		tions of the z-Transform	243
		10.5.1	Transfer Function and System Response	243
		10.5.2	Characterization of a System by its Poles and Zeros	245
		10.5.3	System Stability	247
		10.5.4	Realization of Systems	248
		10.5.5	Feedback Systems	251

	10.6	Summar	<u></u>	253
			Reading	253
		Exercise	es	253
11	The	Laplace	Transform	259
	11.1	The Lap	place Transform	259
		11.1.1	Relationship Between the Laplace Transform and the	
			z-Transform	262
	11.2	•	es of the Laplace Transform	263
		11.2.1	Linearity	263
		11.2.2	Time Shifting	264
		11.2.3	Frequency Shifting	264
		11.2.4	Time-differentiation	265
		11.2.5	Integration	267
		11.2.6	Time Scaling	268
		11.2.7	Convolution in Time	268
		11.2.8	Multiplication by t	269
		11.2.9	Initial Value	269
		11.2.10	Final Value	270
		11.2.11	Transform of Semiperiodic Functions	270
	11.3	The Inve	erse Laplace Transform	271
	11.4	Applica	tions of the Laplace Transform	272
		11.4.1	Transfer Function and System Response	272
		11.4.2	Characterization of a System by its Poles and Zeros	273
		11.4.3	System Stability	274
		11.4.4	Realization of Systems	276
		11.4.5	Frequency-domain Representation of Circuits	276
		11.4.6	Feedback Systems	279
		11.4.7	Analog Filters	282
	11.5	Summai	ry	285
			Reading	285
		Exercise	es	285
12	State	space A	Analysis of Discrete Systems	293
12		-	te-space Model	293
	12.1	12.1.1	Parallel Realization	293
		12.1.1	Cascade Realization	299
	12.2		omain Solution of the State Equation	300
	12.2	12.2.1	Iterative Solution	300
		12.2.1		301
			The Impulse Response	307

xii Contents

13	2.3 Frequency-domain Solution of the State Equation	308	
	2.4 Linear Transformation of State Vectors	310	
	2.5 Summary	312	
12	Further Reading	313	
	Exercises	313	
13 St	tate-space Analysis of Continuous Systems	317	
	3.1 The State-space Model	317	
13	3.2 Time-domain Solution of the State Equation	322	
	3.3 Frequency-domain Solution of the State Equation	327	
	3.4 Linear Transformation of State Vectors	330	
13	3.5 Summary	332	
	Further Reading	333	
	Exercises	333	
Appe	ndix A: Transform Pairs and Properties	337	
Appe	ndix B: Useful Mathematical Formulas	349	
Answers to Selected Exercises			
Index			

Introduction

In typical applications of science and engineering, we have to process signals, using systems. While the applications vary from communication to control, the basic analysis and design tools are the same. In a signals and systems course, we study these tools: convolution, Fourier analysis, z-transform, and Laplace transform. The use of these tools in the analysis of linear time-invariant (LTI) systems with deterministic signals is presented in this book. While most practical systems are nonlinear to some extent, they can be analyzed, with acceptable accuracy, assuming linearity. In addition, the analysis is much easier with this assumption. A good grounding in LTI system analysis is also essential for further study of nonlinear systems and systems with random signals.

For most practical systems, input and output signals are continuous and these signals can be processed using continuous systems. However, due to advances in digital systems technology and numerical algorithms, it is advantageous to process continuous signals using digital systems (systems using digital devices) by converting the input signal into a digital signal. Therefore, the study of both continuous and digital systems is required. As most practical systems are digital and the concepts are relatively easier to understand, we describe discrete signals and systems first, immediately followed by the corresponding description of continuous signals and systems.

1.1 The Organization of this Book

Four topics are covered in this book. The time-domain analysis of signals and systems is presented in Chapters 2–5. The four versions of the Fourier analysis are described in Chapters 6–9. Generalized Fourier analysis, the z-transform and the Laplace transform, are presented in Chapters 10 and 11. State space analysis is introduced in Chapters 12 and 13.

The amplitude profile of practical signals is usually arbitrary. It is necessary to represent these signals in terms of well-defined basic signals in order to carry out

efficient signal and system analysis. The impulse and sinusoidal signals are fundamental in signal and system analysis. In Chapter 2, we present discrete signal classifications, basic signals, and signal operations. In Chapter 3, we present continuous signal classifications, basic signals, and signal operations.

The study of systems involves modeling, analysis, and design. In Chapter 4, we start with the modeling of a system with the difference equation. The classification of systems is presented next. Then, the convolution–summation model is introduced. The zero-input, zero-state, transient, and steady-state responses of a system are derived from this model. System stability is considered in terms of impulse response. The basic components of discrete systems are identified. In Chapter 5, we start with the classification of systems. The modeling of a system with the differential equation is presented next. Then, the convolution-integral model is introduced. The zero-input, zero-state, transient, and steady-state responses of a system are derived from this model. System stability is considered in terms of impulse response. The basic components of continuous systems are identified.

Basically, the analysis of signals and systems is carried out using impulse or sinusoidal signals. The impulse signal is used in time-domain analysis, which is presented in Chapters 4 and 5. Sinusoids (more generally complex exponentials) are used as the basic signals in frequency-domain analysis. As frequency-domain analysis is generally more efficient, it is most often used. Signals occur usually in the time-domain. In order to use frequency-domain analysis, signals and systems must be represented in the frequency-domain. Transforms are used to obtain the frequency-domain representation of a signal or a system from its time-domain representation. All the essential transforms required in signal and system analysis use the same family of basis signals, a set of complex exponential signals. However, each transform is more advantageous to analyze certain types of signal and to carry out certain types of system operations, since the basis signals consists of a finite or infinite set of complex exponential signals with different characteristics—continuous or discrete, and the exponent being complex or pure imaginary. The transforms that use the complex exponential with a pure imaginary exponent come under the heading of Fourier analysis. The other transforms use exponentials with complex exponents as their basis signals.

There are four versions of Fourier analysis, each primarily applicable to a different type of signals such as continuous or discrete, and periodic or aperiodic. The discrete Fourier transform (DFT) is the only one in which both the time- and frequency-domain representations are in finite and discrete form. Therefore, it can approximate other versions of Fourier analysis through efficient numerical procedures. In addition, the physical interpretation of the DFT is much easier. The basis signals of this transform is a finite set of harmonically related discrete exponentials with pure imaginary exponent. In Chapter 6, the DFT, its properties, and some of its applications are presented.

Fourier analysis of a continuous periodic signal, which is a generalization of the DFT, is called the Fourier series (FS). The FS uses an infinite set of harmonically related continuous exponentials with pure imaginary exponent as the basis signals.