CAMBRIDGE

AEROSPACE

SERIES

AIRCRAFT DESIGN

Aircraft Design

Ajoy Kumar Kundu Queen's University Belfast

CAMBRIDGEUNIVERSITY PRESS

32 Avenue of the Americas, New York NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107425316

© Ajoy Kumar Kundu 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010 First paperback edition 2014

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Kundu, Ajoy Kumar, 1932– Aircraft design / Ajoy Kumar Kundu.

p. cm.

Includes bibliographical references and index. ISBN 978-0-521-88516-4 (hardback)

13DN 976-0-321-86310-4 (Hardback)

1. Airplanes – Design and construction. I. Title.

TL671.2.K76 2010

629.133'34 – dc22 2009027795

ISBN 978-0-521-88516-4 Hardback ISBN 978-1-107-42531-6 Paperback

Additional resources for this publication at www.cambridge.org/Kundu

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

AIRCRAFT DESIGN

Aircraft Design explores the conceptual phase of a fixed-wing aircraft design project. Designing an aircraft is a complex, multifaceted process that embraces many technical challenges in a multidisciplinary environment. By definition, the topic requires intelligent use of aerodynamic knowledge to configure aircraft geometry suited specifically to a customer's demands. It involves configuring aircraft shape, estimating its weight and drag, and computing the available thrust from the matched engine. The methodology includes formal sizing of the aircraft, engine matching, and substantiating performance to comply with a customer's demands and government regulatory standards. Associated topics include safety issues; environmental issues; material choice: structural layout; and understanding the flight deck, avionics, and systems (for both civil and military aircraft). Cost estimation and manufacturing considerations also are discussed. The chapters are arranged to optimize understanding of industrial approaches to aircraft-design methodology. Example exercises based on the author's industrial experience with typical aircraft design are included. Additional sections specific to military aircraft highlighted with an asterisk are available on the Web at www.cambridge.org/Kundu

Ajoy Kumar Kundu was educated in India (Jadavpur University), the United Kingdom (Cranfield University and Queen's University Belfast), and the United States (University of Michigan and Stanford University). His experience spans nearly thirty years in the aircraft industry and fifteen years in academia. In India, he was Professor at the Indian Institute of Technology, Kharagpur; and Chief Aircraft Designer at Hindustan Aeronautics Ltd., Bangalore. In North America, he was Research Engineer for the Boeing Aircraft Company. Renton, and Intermediate Engineer for Canadair Ltd., Montreal. He began his aeronautical career in the United Kingdom with Short Brothers and Harland Ltd., retiring from Bombardier Aerospace-Shorts, Belfast, as Chief Assistant Aerodynamicist. He is currently associated with Queen's University Belfast. He held British, Indian, and Canadian private pilot licenses. He is a Fellow of the Royal Aeronautical Society and the Institute of Mechanical Engineers and an Associate Fellow of the American Institute of Aeronautics and Astronautics.

Cambridge Aerospace Series

Editors Wei Shyy and Michael J. Rycroft

- 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
- 2. P. Berlin: The Geostationary Applications Satellite
- 3. M. J. T. Smith: Aircraft Noise
- 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft
- 5. W. A. Mair and D. L. Birdsall: Aircraft Performance
- 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control
- 7. M. J. Sidi: Spacecraft Dynamics and Control
- 8. J. D. Anderson: A History of Aerodynamics
- 9. A. M. Cruise, J. A. Bowles, C. V. Goodall, and T. J. Patrick: *Principles of Space Instru*ment Design
- 10. G. A. Khoury and J. D. Gillett (eds.): Airship Technology
- 11. J. Fielding: Introduction to Aircraft Design
- 12. J. G. Leishman: Principles of Helicopter Aerodynamics, 2nd Edition
- 13. J. Katz and A. Plotkin: Low Speed Aerodynamics, 2nd Edition
- 14. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control: A History of the Technologies that Made Aviation Possible, 2nd Edition
- 15. D. H. Hodges and G. A. Pierce: Introduction to Structural Dynamics and Aeroelasticity
- 16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
- 17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
- 18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
- 19. D. D. Knight: Numerical Methods for High-Speed Flows
- 20. C. Wagner, T. Hüttl, and P. Sagaut: Large-Eddy Simulation for Acoustics
- 21. D. Joseph, T. Funada, and J. Wang: Potential Flows of Viscous and Viscoelastic Fluids
- 22. W. Shyy, Y. Lian, H. Liu, J. Tang, and D. Viieru: Aerodynamics of Low Reynolds Number Flyers
- 23. J. H. Saleh: Analyses for Durability and System Design Lifetime
- 24. B. K. Donaldson: Analysis of Aircraft Structures, Second Edition
- 25. C. Segal: The Scramjet Engine: Processes and Characteristics
- 26. J. Doyle: Guided Explorations of the Mechanics of Solids and Structures
- 27. A. Kundu: Aircraft Design
- 28. M. Friswell, J. Penny, S. Garvey, and A. Lees: Fundamentals of Rotor Dynamics
- 29. B. Conway (ed): Spacecraft Trajectory Optimization

Symbols and Abbreviations

Symbols

A area

A₁ intake highlight area

A_{th} throat area

APR augmented power rating

AR aspect ratio Aw wetted area

a speed of sound; acceleration \bar{a} average acceleration at 0.7 V_2

ac aerodynamic center B breadth, width

b span

 C_R, C_B root chord C_D drag coefficient

 C_{Di} induced drag coefficient C_{Dp} parasitic drag coefficient

C_{Dpmin} minimum parasitic drag coefficient

C_{Dw} wave drag coefficient

C_v specific heat at constant volume

C_F overall skin friction coefficient; force coefficient C_f local skin friction coefficient; coefficient of friction

C_L lift coefficient

C_l sectional lift coefficient; rolling moment coefficient

C_{Li} integrated design lift coefficient

 $C_{L\alpha}$ lift curve slope $C_{L\beta}$ sideslip curve slope

C_m pitching-moment coefficient C_n yawing-moment coefficient

C_p pressure coefficient; power coefficient; specific heat at constant

pressure

C_T thrust coefficient

C_{HT} horizontal tail volume coefficient

C_{VT} vertical tail volume coefficient

C_{xxxx} cost, with subscript identifying parts assembly

C'_{xxxx} cost, heading for the type CC combustion chamber CG center of gravity

 $\begin{array}{cc} c & chord \\ c_{root} & root \ chord \\ c_{tip} & tip \ chord \end{array}$

 $\begin{array}{lll} cp & center \ of \ pressure \\ D & drag; \ diameter \\ D_{skin} & skin \ friction \ drag \\ D_{press} & pressure \ drag \\ d & diameter \\ \end{array}$

E modulus of elasticity e Oswald's factor

F force

f flat-plate equivalent of drag; wing span f_c ratio of speed of sound (altitude to sea level)

 F_{ca} aft-fuselage closure angle F_{cf} front-fuselage closure angle

 F_B body axis F_I inertia axis F_W wind axis

 F_{xxx} component mass fraction; subscript identifies the item (see Sec-

tion 8.8)

F/m_a specific thrust FR fineness ratio

g acceleration due to gravity

H height

h vertical distance; height

J advance ratio

k constant (sometimes with subscript for each application)

L length; lift

 L_{FB} nacelle forebody length L_{HT} horizontal tail arm L_{N} nacelle length L_{VT} vertical tail arm

L length

M mass; moment M_f fuel mass

M_i component group mass; subscript identifies the item (see Sec-

tion 8.6)

M_{xxx} component item mass; subscript identifies the item (see Sec-

tion 8.6)

 \dot{m}_a airmass flow rate \dot{m}_f fuel mass flow rate

 \dot{m}_p primary (hot) airmass flow rate (turbofan) \dot{m}_s secondary (cold) airmass flow rate (turbofan)

N revolutions per minute; number of blades; normal force

N_e number of engines

n load factor

ng load factor \times acceleration due to gravity P, p static pressure; angular velocity about X-axis

p_e exit plane static pressure

 p_{∞} atmospheric (ambient) pressure

 P_t , p_t total pressure

Q heat energy of the system

q dynamic head; heat energy per unit mass; angular velocity about

Y-axis

R gas constant; reaction
Re Reynolds number

Re_{crit} critical Reynolds number

r radius; angular velocity about X-axis

S area (usually with the subscript identifying the component)

S_H horizontal tail reference area S_n maximum cross-sectional area

S_W wing reference area

 $egin{array}{lll} S_V & ext{vertical tail reference area} \\ ext{sfc} & ext{specific fuel consumption} \\ T & ext{temperature; thrust; time} \\ T_C & ext{nondimensional thrust} \\ \end{array}$

T_F nondimensional force (for torque)
T_{SLS} sea-level static thrust at takeoff rating

T/W thrust loading

t/c thickness-to-chord ratio

tf turbofan

 $\begin{array}{cc} U_g & \text{vertical gust velocity} \\ U_\infty & \text{freestream velocity} \end{array}$

u local velocity along X-axis

V freestream velocity

 $\begin{array}{lll} V_A & & \text{aircraft stall speed at limit load} \\ V_B & & \text{aircraft speed at upward gust} \\ V_C & & \text{aircraft maximum design speed} \\ V_D & & \text{aircraft maximum dive speed} \end{array}$

V_S aircraft stall speed

V_e exit plane velocity (turbofan)

V_{ep} primary (hot) exit plane velocity (turbofan)
V_{es} secondary (cold) exit plane velocity (turbofan)

W weight; width

W_A useful work done on aircraft

W_E mechanical work produced by engine

W/S_w wing; loading

X	distance along X -axis
y	distance along Y-axis
Z	vertical distance

Greek Symbols

t, tot

total

α	angle of attack
β	CG angle with vertical at main wheel; blade pitch angle; sideslip
	angle
Γ	dihedral angle; circulation
γ	ratio of specific heat; fuselage clearance angle
Δ	increment measure
δ	deflection
ε	downwash angle
η_{t}	thermal efficiency
$\eta_{ m p}$	propulsive efficiency
$\eta_{ m O}$	overall efficiency
θ	angle
Λ	wing sweep (subscript indicates the chord line)
λ	taper ratio
μ	friction coefficient; wing mass
Σ	summation
ρ	density
θ	fuselage upsweep angle
π	pi
σ	atmospheric density ratio
τ	thickness parameter
ω	angular velocity

Subscripts (In many cases, subscripts are spelled out and are not listed here.)

```
aft
a
                average
ave
                primary exit plane
ep
                secondary exit plane
es
                front; fuselage
f
                blockage factor for drag
f_b
                drag factor for nacelle profile drag (propeller-driven)
f_h
fus
                fuselage
HT
                horizontal tail
                middle
M
N, nac
                nacelle
                freestream condition
0
                primary (hot) flow
p
                stall; secondary (cold) flow
S
```

w wing

VT vertical tail

 ∞ freestream condition

Abbreviations

AB afterburning

ACAS advanced close air support
ACN aircraft classification number
ACT active control technology

AEA Association of European Airlines

AEW airborne early warning

AF activity factor

AGARD Advisory Group for Aerospace Research and Department

AGS aircraft general supply

AIAA American Institute for Aeronautics and Astronautics

AIP Aeronautical Information Publication

AJT advanced jet trainer

AMPR Aeronautical Manufacturer's Planning Report

APR augmented power rating
APU auxiliary power unit
AST Air Staff Target

ATA Aircraft Transport Association

ATC air traffic control

ATF advanced tactical support AVGAS aviation gasoline (petrol) AVTUR aviation turbine fuel

BAS Bombardier Aerospace–Shorts

BFL balanced field length BOM bill of material BPR bypass ratio

BRM brake release mass
BVR beyond visual range
BWB blended wing body

CAA Civil Aviation Authority
CAD computer-aided design
CAE computer-aided engineering
CAM computer-aided manufacture
CAPP computer-aided process planning

CAS close air support; control augmentation system; calibrated air

speed

CAT clear air turbulence
CBR California bearing ratio
CCV control configured vehicle
CFD computational fluid dynamics

CFL critical field length

CG center of gravity
CRT cathode ray tube
CV control volume
DBT design-build team

DCPR Design Controller's Planning Report

DES detached eddy simulation
DFFS Design for Six Sigma

DFM/A design for manufacture and assembly

DNS direct numerical simulation
DOC direct operating cost
DTLCC design to life cycle cost
EAS equivalent air speed

EASA European Aviation Safety Agency

EBU engine-build unit

ECS environment control system

EDP engine-driven pump

EFIS electronic flight information system

EGT exhaust gas temperature

EI emission index

EPA U.S. Environmental Protection Agency

EPNL effective perceived noise level

EPR exhaust–pressure ratio

ESDU Engineering Sciences Data Unit

ESHP equivalent SHP

ESWL equivalent single wheel load ETOPS extended twin operations

EW electronic warfare

FAA Federal Aviation Administration FADEC full authority digital electronic control FAR Federal Aviation Regulations (U.S.)

FBW fly-by-wire

FEM finite element method FPS foot, pound, second FS factor of safety

GAW Global Atmosphere Watch
HAL Hindustan Aeronautics Ltd.
HMD helmet-mounted display
HOTAS hands-on throttle and stick
HP horse power; high pressure

HSC high-speed cruise HST hypersonic transport

H-tail horizontal tail HUD head-up display IAS indicated air speed

IATA International Air Transport Association ICAO International Civil Aviation Organization

IIT Indian Institute of Technology

IMC instrument meteorological conditions

INCOSE International Council of Systems Engineering

IOC indirect operational cost

IPPD Integrated Product and Process Development

ISA International Standard Atmosphere
ISRO Indian Space Research Organization

JAA Joint Aviation Authority

JAR Joint Airworthiness Regulation

JPT jet pipe temperature

JUCAS Joint Unmanned Combat Air System

KE kinetic energy

KEAS knots equivalent air speed

km kilometer LA light aircraft

LAM lean and agile manufacturing

LCA light combat aircraft

LCC life cycle cost

LCD liquid crystal display
LCG load classification group
LCN load classification number
LCR lip contraction ratio

LD, L/D lift-to-drag (ratio)
LE leading edge

LES large eddy simulation

LF load factor

LFL landing field length LOH liquid hydrogen LP low pressure

LPO long-period oscillation

LRC long-range cruise

LRU line replacement unit

MAC mean aerodynamic chord

MDA multidisciplinary analysis

MDO multidisciplinary optimization

MEM (W) manufacturer's empty mass (weight)

MFD multifunctional display

MFR mass flow rate
MoD Ministry of Defense
MOGAS motor gasoline (petrol)

MP minor parts miles per hour

MPM manufacturing process management

MRM maximum ramp mass m/s meters per second MTM maximum taxi mass

MTOM (W) maximum take off mass (weight)

NACA National Advisory Committee for Aeronautics

NASA National Aeronautics and Space Administration

NBAA National Business Aircraft Association

NC numerically controlled

NHA negative high angle of attack

NIA negative intermediate angle of attack

NLA negative low angle of attack

nm nautical miles
NP neutral point
NRC non-recurring cost

NTC normal training configuration

OC operational cost

OEM (W) operator's empty mass (weight)
OEMF operational empty mass fraction
OEWF operational empty weight fraction

PAX passenger

PCN pavement classification number

PCU power control unit
PE potential energy
PFD primary flight display

PHA positive high angle of attack

PIA positive intermediate angle of attack

PLA positive low angle of attack PLM product life cycle management

PNdB perceived noise decibel PNL perceived noise level

PPR product, process, and resource PRSOV pressure-reducing shutoff valve psfc power-specific fuel consumption

psi pounds per square inch PTU power transfer unit

QFD quality function deployment
QUB The Queen's University Belfast
RAE Royal Aircraft Establishment
RAeS Royal Aeronautical Society

RANS Reynolds Average Navier–Stokes

RAT ram air turbine

RC rate of climb, recurring cost
RCS radar cross-section signature
RD&D research, design, and development

RDDMC research, design, development, manufacture, and cost

RDD&T research, design, development, and test

RFP Request for Proposal

RJ regional jet

R&M reliability and maintainability

rpm revolutions per minute; revenue passenger mile

rps revolutions per second RPV remotely piloted vehicle SAS stability augmentation system

SATS Small Aircraft Transportation System SAWE Society of Allied Weights Engineers

SEP specific excess power sfc specific fuel consumption

SHP shaft horsepower SI system international

SOV shutoff valve

SPL sound pressure level
SPO short-period oscillation
SST supersonic transport
STOL short takeoff and landing

STR structures

TAF total activity factor
TAS true air speed

TBO time between overhauls t/c thickness to chord

TET turbine entry temperature
TGT turbine guide vane temperature

TOC total operating cost TOFL takeoff field length

TP thrust power

TQM Total Quality Management

TR thrust reverser

TTOM typical takeoff mass (military)

T&E training and evaluation
UAV unmanned air vehicle
UCA unmanned combat aircraft

UHBPR ultra-high BPR

UHC unburned hydrocarbons

ULD unit load device

USDOT U.S. Department of Transportation

VOC voice-operated control

VPI Virginia Polytechnic Institute

V-tail vertical tail

VTOL vertical takeoff and landing ZFM (W) zero fuel mass (weight)

Preface

This book is about the conceptual phase of a fixed-winged aircraft design project. It is primarily concerned with commercial aircraft design, although it does not ignore military aircraft design considerations. The level of sophistication of the latter is such that were I to discuss advanced military aircraft design, I would quickly deviate from the objective of this book, which is for introductory but extensive coursework and which provides a text for those in the industry who wish to broaden their knowledge. The practicing aircraft design engineer also will find the book helpful. However, this book is primarily meant for intensive undergraduate and introductory postgraduate coursework.

A hundred years after the first controlled flight of a manned, heavier-than-air vehicle, we can look back with admiration at the phenomenal progress that has been made in aerospace science and technology. In terms of hardware, it is second to none; furthermore, integration with software has made possible almost anything imaginable. Orville and Wilbur Wright and their contemporaries would certainly be proud of their progenies. Hidden in every mind is the excitement of participating in such feats, whether as operator (pilot) or creator (designer): I have enjoyed both no less than the Wright brothers.

The advancement of aerospace science and technology has contributed most powerfully to the shaping of society, regardless to which part of the world one refers. Sadly, of course, World War II was a catalyst for much of what has been achieved in the past six decades. My career spans the 1960s to the beginning of the twenty-first century, possibly the "golden age" of aeronautics! In that period, investment in the aerospace sector by both government and private organizations led to rapid changes in the acquisition, application, and management of resources. Aerospace design and manufacturing practices were transformed into their present manifestation.

The continuous changes in aircraft design and manufacturing procedures and methodologies have resulted in leaner aerospace infrastructure (sometimes to an "anorexic" level). New graduate-level engineers are expected to contribute to the system almost immediately, with minimal supervision, and to "do it right the first time." The route to the design office through apprentice training is not open to as many as it once was. Life is now more stressful for both employers and employees than it was the day I started my career: Organizational survivability and consequent loyalty are not what they used to be. The singular aim of this book is to

xxxii Preface

prepare readers as much as possible for industry-standard engineering practices. The methodology adopted herein is in line with what is practiced in industry; the simplifications adopted for classroom use are supported by explanations so that an appreciation of industry expectations will not be lost. Aircraft conceptual design necessarily entails an iterative process. In the classroom, one or two iterations should prove sufficient as a time-efficient procedure to refine component sizes and to freeze aircraft configurations.

My student days were almost devoid of any aircraft design book. Wood [1] and Corning [2] were the early books that brought aircraft design into textbook form, followed by an excellent text written by Nicolai [3]. In 1982, Torenbeek [4] covered substantial ground with contemporary treatises in his book. Roskam's compilation [5] furthered the cause. I have benefited greatly from the works of these five authors. Gradually, more aircraft design books have appeared in the literature [6–18], each with its own strength. There is still considerable scope to advance the subject, specifically by preparing new engineers to cope with the demand for a high level of proficiency in the industry. (I recommend that readers review the Virginia Tech Web site of aircraft design bibliographies [18]. It is a comprehensive compilation of aircraft design information sources.)

One-third of my career has been spent in academia and two-thirds in aircraft design. I can see a clear gap between academic pursuits and what industry expects from new graduates as finished university "products." The United States and the United Kingdom are aware of this problem [19–24], and both make periodic recommendations. However, the problem is acute in the developing world, where tasks among scientists with advanced degrees and engineers are not as clearly defined as they are in the West. (If I may digress slightly, I have found from personal experience that a major hindrance to progress in some of the developing world comes from the inability to administrate technological goals even when there is no dearth of technical manpower – those who perform better when working in the advanced world. People know about political asylum. However, professional asylum, also known as the "brain drain," is a real issue. Although design is not accomplished via the democratic process, the design culture should encourage the free sharing of knowledge and liberal distribution of due recognition to subordinates. Lack of accountability in higher offices is a root cause of the failure to exploit the full potential of natural and human resources.) In time, things are changing but unfortunately slower than its potential because higher management still maintains older attitudes that masquerade behind seemingly modern views. Technology can be purchased, but progress has to be earned. I hope to prepare the readers to contribute to the progress.

The roles of scientists and engineers are well defined. According to Von Karman, "A scientist discovers what already exists. An engineer creates what never was" [25]. Converting ideas into reality for customer use proves more difficult than adding any number of publications to a list (except those papers that break new ground or advance a cause that is being adapted to enrich a generation). Perhaps the measure by which to judge scientists should be like that of engineers – namely, how much wealth has the work generated (where wealth is defined in broad terms as all that encompasses the commonweal). It should be clearly understood that scientists and engineers have to work together and not in a fallacious hierarchy in which advanced degrees stand above significant experience. Consider engineers such as

Johnson, Mitchell, and Dassault – these are the people to whom I refer. Today's engineers must have strong analytical and applied abilities to convert ideas into profitable products. I hope that this book serves this cause by combining analytical methods and engineering practices and adapting them to aircraft design. Prerequisites are second-year (U.K.) or junior-level (U.S.) mathematics and aerodynamics. It is not difficult to acquire these prerequisites – simply a semester of effort in a class found in any university syllabus. Of course, by including "experience," this book offers more than just analysis; aircraft design must be practiced.

Engineering design is a process, and today's practices have so matured that they demonstrate systematic patterns despite the differences that exist between companies or countries, whether military or civil. The laws that govern the behavior of nature are universal. The differences are in the governing rules and practices of resource acquisition and management. The resulting products within the course still remain in close competition and may even show similarities in presentation and performance, not necessarily dependent on any 007 work!

I thank my teachers, supervisors, colleagues, students, shop-floor workers, and all those who taught and supported me during my career. I remember (in no particular order) the late Professor Holt Ashley of Stanford University; Professor Arthur Messiter of the University of Michigan; James Palmer of Cranfield University; Professor Shankar Lal of the Indian Institute of Technology, where I was Professor; Kenneth Hoefs of the new airplane project group of the Boeing Company, who taught me aircraft sizing and drag estimation; James Fletcher of Short Brothers and Harland, who baptized me into the aircraft industry; Tom Johnston, Director and Chief Engineer of Bombardier Aerospace-Shorts (BAS) who provided considerable help in bringing out this book; the late Dr. Vikram Sarabhai, who gave me the opportunity to be associated with the Indian Space Research Organisation; and Wing Commander Baljit Kapur, Chairman of Hindustan Aeronautics Limited (HAL [26]), where I served as the Chief Aircraft Designer. My special thanks to Dr. Tom Cummings of BAS; Noel Weir of Canadair Ltd; Stephen Snyder, formerly of the Boeing Company and now an independent consultant; and B. C. Chamundaiah and the shop-floor workers of HAL, who stood by me during difficult days. I derive tremendous pleasure from teaching and have valued interaction with students in India, Iraq, the United Kingdom, and the United States. They came to me as a bouquet of flowers. I aver that they have taught me no less than I have taught them. This book reflects the universal demands of students. In their company, I was able to remember my youth.

I am thankful to my former colleagues Colin Elliott, Director of Engineering; David Riordan, Chief Engineer; and James Tweedie, Senior Engineer, BAS, who have helped me bring out an industry-standard book on aircraft design. David's review work is thankfully acknowledged. The contribution of BAS is gratefully acknowledged. I started my aeronautical career with BAS (then Short Brothers and Harland Ltd.) and, after a long break, rejoined and then retired from the company, the first aerospace company to celebrate its centenary.

The aim of this book is to enable new graduates to seamlessly join the industry in order to become productive as soon as possible. The book also could be used in the industry for training purposes. In today's world, engineers may need to be retrained in broader disciplines to offer support in areas beyond their main area of specialization. To ensure continuity and overcome any current deficiencies in a second