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PREFACE

This encyclopedia was originally to be an en-
cyclopedia of structural geology. As originally
conceived, the encyclopedia would cover such
classical concepts in structural geology as the de-
scription of folds, faults, joints, and so forth.
However, when I took over as editor after Rhodes
W. Fairbridge in 1984, I decided to also include
plate tectonics in the encyclopedia. In part, this
was necessitated by the revolution in geological
thinking that followed the acceptance of the ideas
of continental drift, seafloor spreading, and plate
tectonics. Although Alfred Wegener originally
published his ideas on continental drift in 1915,
widespread acceptance of continental drift did not
come until oceanographers demonstrated con-
vincing evidence of seafloor spreading in the mid-
1960s. In the late 1960s the idea of plate tectonics
was proposed by W. Jason Morgan. He viewed
the Earth’s surface as being divided up into a
number of relatively rigid plates that are moving
relative to each other. Deformation of these
plates, including folding, faulting, and mountain
building is principally confined to the margins of
these plates. Earthquakes, which are the result of
movements along faults, are also principally con-
fined to those margins.

The AGI Glossary contains short definitions of
most, if not all, of the terms discussed in this en-
cyclopedia, but one of the principal reasons for
preparing an encyclopedia such as this one is to
provide a much more extensive discussion of geo-
logic terms than can be given in the AGI Glossary.

How To Use This Encylopedia

The entries in this encyclopedia, which are in
alphabetical order, vary from short to long de-
pending in part on the relative importance of the
subject. The length of the entries also depends on
the number of subtopics discussed. For example,
the article on Folds and Folding includes discus-
sions of many topics such as anticlines, synclines,
axial surface, and so forth. Alphabetically listed
cross-references and the index provide the loca-
tion of specific entries discussed under such gen-
eral topics as Folds and Folding. Cross-references
are also given at the end of entries when appro-
priate and these will provide additional readings
on the subject covered in that particular entry.
Additional references are given in the text of each
entry to subjects discussed in that entry using (see
name of article). References at the end of each

entry will provide still additional sources of in-
formation on that entry.

The metric system is used frequently through-
out the encyclopedia, and the conversion of met-
ric units to English of length is given below:

Metric to English Units—Equivalents of Length

1 micron () = 0.001 millimeter (mm) = 0.00004
inch (in)

I mm = 0.1 centimeter (cm) = 0.03937 in

1000 mm = 100 cm = 1 meter (m) = 39.37 in
= 3.2808 foot (ft)

I m = 0.001 kilometer (km) = 1.0936 yard (yd)

1000 m = 1 km = 0.62137 mile (mi)

lin = 2.54 cm

12in = 1 ft = 0.3048 m
1 cm = 0.39370 in = 0.032808 ft
1km = 10° cm = 0.62137 mile

1 fathom = 6 ft = 1.8288 m
1 nautical mile = 1.85325 km
1 in = 2.54001 cm

1 ft = 30.480 cm

1 statute mile = 1.60935 km = 5280 ft

Further Comments

The reader of this encyclopedia may notice that
there are some disagreements in the interpretation
of data from one entry to the next and sometimes
these interpretations differed from those of the
editor. I made the decision as editor nof to try to
make all entries consistent with each other (or with
my views) but rather to let each author express his
own viewpoint. In this way, the reader is exposed
to differing views in much the same way that the
reader is exposed to differing views in the geologi-
cal literature. An effort was made, however, to at
least indicate (and often reference) alternate inter-
pretations where there is a major difference of
interpretation among several authors published in
the geological literature. Because much of geol-
ogy involves reconstructing events which have oc-
curred in the distant past, it is quite understand-
able that there are often strong differences of
opinion on interpretations of data, and the en-
cyclopedia reflects such differences.
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GEODYNAMICS.

ACCELERATING (TERTIARY)
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ACTIVE SUBDUCTION—See
UNDATION THEORY.

ALLOCHTHON

The term allochthon is derived from the Greek
allos ‘other’ and chthonous ‘of the earth.” Al-
lochthonous objects have been displaced from
their original site of origin, in contrast to autoch-
thonous (auto, ‘self’) objects that remain indig-
enous or in situ. In geology, the term alloch-
thonous has been used to characterize plant ma-
terial transported from site of growth to site of
deposition into coal seams (allochthony), for
masses of redeposited sediments from distant
sources, for constituents of derived magmas (cf.
allogenic components), for transported and re-
deposited fossils (cf. remanié faunas), for impact
crater ejecta, and for subterranean streams in
karst regions.

In structural geology, an allochthon is a large
allochthonous body of mappable, coherent rock
such as the Taconic Allochthon of eastern New
York (see Zen, 1967; Bird and Dewey, 1970) or
smaller masses of chaotic, slumped rock and sed-
iment, called olistostromes, such as those of the
central and northern Apennines of Italy (see Elter
and Trevisan, 1973). The term allochthon, first
used by C. F. Naumann (1858), has had wide-
spread usage in describing regions in orogenic

belts where compression during orogenic evolu-
tion has emplaced masses of rock and sediment
from distant root zones by overthrusting, or by
gravity sliding (see Gravity Slide Tectonics) from
uplifted terrains.

There are neither formally established conven-
tions for the use of the term allochthon nor for
criteria of dimensions for allochthons. For ex-
ample, the Taconic Allochthon is approximately
250 km long and 50 km wide, whereas Apennine
olistostromes range from several meters to many
kilometers in lateral dimensions. Allochthons are
characterized by discordant structural boundaries
such as thrust faults and/or associated mélanges
of sediment and rock, contrasting facies and rock
types, and older or synchronous ages with respect
to the underlying autochthon. The age of em-
placement of the allochthon may be coeval with
or younger than the youngest subjacent rocks or
sediments of the autochthon. Some allochthons,
such as portions of the Taconic Allochthon and
the olistostromes of the Apennines, were em-
placed as submarine slumps and gravity slides
synchronously with deposition of autochthonous
sediments on the autochthon. Allochthons may
be stacked in a structural sequence (e.g., Zen,
1967). This stacking results in complex age rela-
tions involving various age differences of the al-
lochthonous rocks and the autochthon and var-
ious times of emplacement of the successive
allochthons, and it may involve differences in dis-
tance of transport of the various individual allo-
chthons or allochthons comprised of sets of
preexisting thrust sheets.

The terms nappe and decke (cover) have been
used extensively for the huge allochthons that are
recumbent folds and thrust sheets in the Alpine
chain of Europe (see Trumpy, 1960). The term
klippe is commonly used for an erosional outlier
of a nappe or decke although, sensu stricto, a
klippe may be simply an isolated erosional rem-
nant of an autochthonous rock mass (see K/ippe).

Sediments may be deposited on a moving sub-
marine allochthon during emplacement. This
leads to a complex time/space relation in which
the superjacent sediments have varying degrees of
allochthony and are said to be epikinallochthon-
ous (epi ‘upon,’ kine ‘moving’; Bird, 1969), to in-
dicate that their transport was a consequence of
having been deposited through an interval of time
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and space on a moving substrate. The delineation
of epikinallochthons is derived from the analysis
of deformational and sedimentary features and
relationships that evolve diachronously with the
evolution of the allochthon. Epikinallochthonous
frameworks are difficult to decipher because they
are syntectonic and may become severely dis-
torted or even destroyed during their evolution.
Later stages of epikinallochthonous sedimenta-
tion become parautochthonous or entirely au-
tochthonous if such sedimentation continues after
cessation of movement of the underlying alloch-
thon. Conversely, during emplacement of alloch-
thons, portions of the autochthon may become
mobilized by the movement of the overriding al-
lochthon, either in response to the forces imposed
by the movement of the allochthon itself or as an
effect of the forces driving the allochthon. Such
tracts are also said to be parautochthonous. (The
term parallochthonous should be avoided.)

Although it has long been recognized that al-
lochthons of orogenic belts are a consequence of
orogenic evolution, the mechanisms of formation
and emplacement have remained a matter of com-
plex debate among structural geologists. The sites
of origin of large allochthons have been particu-
larly difficult to locate in some orogenic belts such
as the Appalachians and the Alps. With the ad-
vent of plate tectonics, it has been accepted that
orogenic evolution is a consequence of litho-
sphere plate evolution. Specifically, Dewey and
Bird (1970) argued that major allochthonous
tracts have been emplaced in paratectonic zones
and from orthotectonic zones driven by litho-
sphere plate subduction and that sources and root
zones of the allochthons may be severely altered
or even destroyed during lithosphere plate sub-
duction.

Particularly important to this model are al-
lochthons comprised of ophiolites, which are se-
quences of ultramafic, gabbroic, and basaltic
rocks that originate as oceanic lithosphere and are
derived by obduction (Coleman, 1971) from re-
gions of subduction. Obduction of ophiolites is
controlled by the geometry and diachronous ev-
olution of consuming plate margins, or subduc-
tion zones. Such evolution can become extremely
complex because of changes in poles of rotation
of the involved lithosphere plates, diachronous
evolution of triple junctions, and collisions in-
volving island arcs and continental margins that
result from lithosphere plate consumption. Good
examples of ophiolite allochthons are in the Bay
of Islands Complex, Newfoundland, and the Se-
mail Complex of the Oman (see Dewey, 1976).
Because of buoyancy constraints, cratonic rocks
(continental crust) are not appreciably subducted.
Given appropriate plate margin geometry, conti-
nental margins are converted to Andean-type or-

ogenic belts and have continentward-directed para-
tectonic zones onto which allochthonous masses
of sediment and oceanic lithosphere are driven
from the regions of subduction, or orthotectonic
zones, during cordilleran evolution. Extensive al-
lochthons are also emplaced during continent-
continent collisions such as that which
occurred in the Himalayan Orogen during con-
vergence of the Tibetan and Indian continents
(Dewey and Bird, 1970).

Fig. 1 is a schematic illustration of the use of
the various terms describing allochthons. The cri-
teria of allochthony are derived from composi-
tional and deformational aspects of the recog-
nized allochthonous mass, whereas autochthons
are defined with respect to unconformities be-
cause the unconformities can be linked with epi-
sodes or stages of tectonic evolution of the para-
tectonic zone. Usually, the autochthon, with
respect to the first emplaced allochthon of a
stacked set, is defined in terms of the closest un-
derlying major unconformity that can be associ-
ated with the emplacement of the allochthon. This
relation is shown in Fig. 1, where allochthon 1, a
gravity slide or perhaps a recumbent fold, overlies
a substrate containing an unconformity. This un-
conformity may be attributed to events in the or-
thotectonic zone that led to the emplacement of
allochthon 1. However, rocks underlying the un-
conformity may also be unconformable on cra-
tonic rocks and can be described as an older au-
tochthon, or palautochthon, because the lowest
unconformity predates the orthotectonic activity.

Submarine gravity slides may originate from
subaerial terrains and, with movement into the
autochthon, usually a flysch basin, develop an
overlying unconformity. This unconformity may
involve an epikinallochthon and be involved in the
transport of the allochthon from source to sub-
marine environment. Also, much of the upper
surface of the allochthon may remain subaerial
during movement and become unconformably
overlain by sediments of the autochthon follow-
ing emplacement. Such an unconformity can be
used to define the base of a new autochthonous
assemblage, neoautochthon 1, if the assemblage
has been overridden by a new allochthon, illus-
trated by allochthon 2 of Fig. 1. Further ortho-
tectonic activity, detaching deeper and more dis-
tant mass@® from the orthotectonic zone, may
emplace an already assembled set of thrust sheets
such as those illustrated by allochthon 3.

Cessation of activity in the paratectonic zone,
either by cessation of orthotectonic activity or by
displacement of the site of orthotectonic activity
to more distant regions, may lead to changes in
volumes and types of sediments deposited in the
evolving autochthon and, perhaps, unconforma-
ble overlap of these sediments onto the para-
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FIGURE 1. Schematic illustration of autochthonous-allochthonous relationships of tectonic structures.

tectonic region. Such new assemblages would
constitute another new autochthon, neoauto-
chthon 2, and contain a sedimentary record re-
flecting changes in the style and the extent of the
tectonic activity. Such assemblages are important
to recognize because erosion in the evolved par-
atectonic zone may destroy evolved structures; the
neoautochthon may be the only record left of late-
stage structures and/or tectonic activity in the
paratectonic zone. Another superimposed episode
of tectonic activity may produce another, differ-
ent assemblage of sediment over the second
neoautochthon. Such an assemblage, neoauto-
chthon 3 in Fig. 1, might be related to the para-
tectonic zone only by sediment provenance be-
cause of complete erosion of the source regions
of the fully evolved paratectonic-orthotectonic re-
gion.

JOHN M. BIRD
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Subdivisions of the Belt

The Appalachian Orogenic Belt is the belt of
Paleozoic deformation along the southeast side of
the North American continent that borders the
central continental platform on that side. Its ma-
jor exposed portion is the Appalachian Moun-
tains (Fig. 1), which reach from central Alabama
through the eastern United States and Canada to
the Gulf of Saint Lawrence and which can be con-
sidered to include Newfoundland as well, but ad-
ditional portions of the belt are concealed beneath
the Atlantic Coastal Plain and the continental
shelf from southern Georgia northeast as far as
the Grand Banks. The belt of Paleozoic defor-
mation can also be traced along a sinuous course
beneath the Gulf Coastal Plain from Alabama to
southwestern Texas and adjacent Mexico; mar-
ginal parts of the belt are exposed in the Ouachita
Mountains of Arkansas and Oklahoma and the
Marathon region of west Texas and in a few
smaller areas in Texas and Mexico (Fig. 2).

The Appalachians were studied very early in the
history of U.S. geology. Many classical ideas have

been derived from them—e.g., strike regularity
and asymmetry as characteristic of folding and
thrust faulting in an orogenic belt (Rogers and
Rogers, 1843), the geosyncline (Hall, 1883; Dana,
1873), anticlinal and carbon-ratio controls on oil
accumulation (White, 1885; White, 1915), and the
relation of low-angle décollement thrusting to
folding (Rich, 1934).

With some important exceptions, structural
features of all kinds exhibit a remarkable paral-
lelism of strike along the Appalachian Belt; they
trace out a sinuous path composed of smoothly
arcuate salients, convex toward the center of the
continent, and separated by more angular re-
cesses, of which several are partly or wholly con-
cealed by water or postorogenic sediments. From
northeast to southwest, the larger curves are as
follows:

Newfoundland Salient,

Gulf of Saint Lawrence Recess,

Quebec or northern Appalachian Salient (itself
gently dimpled close to Quebec City),
New York Recess

Pennsylvania or central Appalachian Salient
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FIGURE 1. Subdivisions of the Appalachian Mountains portion of the Appalachian Orogenic Belt and adjoining

regions.



Roanoke or Virginia Recess,

Tennessee or southern Appalachian Salient,
Alabama-Mississippi Recess,

Ouachita Salient,

Central Texas or Llano Recess,

Marathon Salient.

These curves group into three broader major seg-
ments of the belt, which have had somewhat dif-
ferent orogenic histories; they are separated by the
New York and Alabama-Mississippi recesses and
are referred to by the names of the included sa-
lient pairs as follows:

Newfoundland-Quebec Segment,
Pennsylvania-Tennessee Segment,
Ouachita-Marathon Segment.

In the Pennsylvania-Tennessee Segment, a
lengthwise subdivision of the chain into belts or
tectonic provinces is clearly displayed, from
northwest to southeast or from the exterior to the
interior of the chain (Fig. 1):

Appalachian Plateau Province: mostly flat-
lying upper Paleozoic sedimentary rocks;

APPALACHIAN OROGENIC BELT

Valley and Ridge Province: folded but not
markedly metamorphosed Paleozoic sedi-
mentary rocks;

Blue Ridge Province: narrower than the others
and notextendingtothelimitsof thesegment—
an anticlinorium exposing Precambrian
basement and lying along the northwest mar-
gin of the belt of significant Paleozoic me-
tamorphism;

Piedmont, or Piedmont Plateau, Province:
metamorphic and igneous rocks of Paleozoic
and perhaps in part Precambrian age, also
scattered fault troughs of Upper Triassic-
Lower Jurassic continental sedimentary
rocks.

Although comparable provinces are less easily
distinguished in the other two segments, in them
one likewise progresses from unfolded to folded
to metamorphosed rocks as one proceeds from the
central platform of the continent into the oro-
genic belt.

In general, sedimentary rocks of each of the
Paleozoic systems are relatively thin in the central
platform of North America and thicken markedly
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