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PREFACE

This book is aimed at providing a coherent, essentially self-contained, rigorous and com-
prehensive abstract theory of Feynman’s operational calculus for noncommuting operators.
Although it is inspired by Feynman’s original heuristic suggestions and time-ordering rules
in his seminal paper 58], as will be made abundantly clear in the introduction (Chapter 1)
and elsewhere in the text, the theory developed in this book also goes well beyond them in
a number of directions which were not anticipated in Feynman’s work. Hence, the second
part of the main title of this book.

It may be helpful to the reader to situate the present research monograph relative to
a companion book [114], written by the first two named authors (Gerald Johnson and
Michel Lapidus) and titled The Feynman Integral and Feynman’s Operational Calculus. (Let
us reassure the reader at once that [114] is not a prerequisite for the present book, however,
as will be discussed in more detail further on in this preface.) The latter nearly 800-page
book [114] was initially published in 2000 by Oxford University Press (with a paperback
edition in 2002 and an electronic edition in the late 2000s) in the same series as the present
monograph. It provides a number of different approaches to the Feynman path integral (or
“sums over histories”), in both “real” and “imaginary” time.

Beginning with Chapter 14 and ending with Chapter 18, the second part of [ 114] (based,
in part, on [110-113] along with [137-143]) develops a rigorous theory of Feynman’s
operational calculus, using certain operator-valued Wiener and Feynman path integrals
(called “analytic-in-mass Feynman integrals”) as well as associated commutative Banach
algebras of functionals, called “disentangling algebras,” and corresponding noncommutat-
ive operations (namely, a noncommutative addition and multiplication) acting on them.
The resulting time-indexed family of disentangling algebras, along with the associated non-
commutative operations, provides a rich algebraic, analytic and combinatorial structure for
the development of a concrete theory of Feynman’s operational calculus within the context
of Feynman path integrals and related path or stochastic integrals.

On the other hand, Chapter 19 of [ 114] (based on the earlier joint work of the authors of
[114] with Brian DeFacio in [33, 34]) begins to build a bridge between the above rigorous
concrete version of the operational calculus and a possible, more general operational calcu-
lus valid for abstract operators (acting on Banach or Hilbert spaces) not necessarily arising
via Wiener or Feynman functionals and associated path integrals. The connections with a
large class of associated evolution equations are also studied in Chapter 19 of [114].

In a sense, Chapters 15-18 together with, specifically, Chapter 19 of [114] lay the foun-
dations and provide a possible starting point for the development of a fully rigorous and
more abstract theory of Feynman'’s operational calculus, which is the object of the present
book. The reader familiar with Chapters 15-19 of [114] will recognize some aspects of,
and motivations for, the theory developed in the present book, but in essence (with the



X | PREFACE

notable exception of Chapter 19 of [114], which inherently serves as the basis for much of
Chapter 6 of this monograph and is described in part in Section 6.2), the two theories and
their presentations are essentially distinct and independent of one another. In particular, the
present theory is aimed at dealing with abstract (typically) noncommuting operators, rather
than operators arising from some kind of path integration (viewed as a suitable quantization
procedure), as in [114]. In fact, some of the key structures developed in the present book
(particularly, the family of commutative disentangling algebras, the corresponding disentan-
gling maps and the associated noncommutative operations; see Chapters 2, S and 6) enable
us, in some sense, to obtain an appropriate abstract substitute for a generalized functional
integral (viewed as a suitable “quantization procedure” (in the sense of [143] and as de-
scribed in [114, Section 18.6]) associated with the Feynman operational calculus attached
to a given n-tuple of pairs { (A, 1)) }’:1 of typically noncommuting bounded operators A,
and probability measures p;, forj=1,...,nandn > 2).

As mentioned earlier, the present book is essentially self-contained. In particular, the
earlier book [114] is not a prerequisite for understanding its contents. However, the inter-
ested reader may wish to consult Chapters 7 and 14 of [114], which provide a thorough
introduction to the physical and heuristic aspects of “the” Feynman integral and Feynman’s
operational calculus, respectively, as well as to the associated and rather daunting math-
ematical difficulties. In the present book, we assume only that the reader has a reasonable
graduate-level background in analysis, measure theory and functional analysis or operator
theory.! Much of the necessary remaining background material is provided in the text itself.

In the introduction (Chapter 1) of this research monograph and elsewhere in the rest of
the text (for example, in parts of Chapters 2, 3, S, 6 and 8), we will present an overview of
the heuristic and physical aspects of Feynman’s operational calculus, with an eye towards
the rigorous abstract theory developed in the book, based on time-ordering, noncommut-
ativity, disentangling algebras, and associated disentangling maps and noncommutative
operations. All of these notions will be progressively introduced and precisely defined, be-
ginning with Chapter 2 and continuing on to Chapter 6, in particular. Along the way, several
techniques for carrying out the “disentangling process,” which is at the heart of Feynman’s
heuristic operator calculus proposed in [58], are developed throughout the book. See,
for example, the discussion of the “disentangling of an exponential factor” (in Section 3.4
and, much more generally, in Chapter 6), the extraction of multilinear factors and itera-
tive disentangling (in Chapter 4), the disentangling formulas (obtained in Chapter $),
the generalized Dyson expansions along with the corresponding evolution equations (in
Chapter 6), the discussion of disentangling via the use of continuous and discrete meas-
ures (in Chapter 8), and the “derivation formulas” (via suitable functional derivatives in
Chapter 9).

Reflecting upon the contents of this book, one sees in hindsight that the variety of disen-
tangling techniques developed in the present theory constitutes one of its main features and

! See, for example, [13, 26, 41, 187, 192] for textbooks on these basic subjects; see also [11, 44, 78, 83, 123,
124, 188, 193, 195, 214] along with [114, Chapters 3, 6-10, 12 and 15] for more advanced material which will
occasionally be needed in this book.
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lies at the core of the present theory. We hope that the reader will find these disentangling
results useful for his or her own purposes and will be stimulated to enrich the theory with
new results, techniques and perspectives of an analytical, geometric, combinatorial or alge-
braic nature. The epilogue to this book (Chapter 11) has been written so as to facilitate this
process and to suggest several possible directions for future research extending Feynman’s
operational calculus in a variety of ways.

Gerald W. Johnson, Michel L. Lapidus and Lance Nielsen
March 2015
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