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PREFACE

TO THE STUDENT

Authors of books live with the hope that someone actually reads them. Contrary to
what you might believe, almost everything in a typical college-level mathematics text
is written for you and not the instructor. True, the topics covered in the text are cho-
sen to appeal to instructors because they make the decision on whether to use it in
their classes, but everything written in it is aimed directly at you the student. So I
want to encourage you—no, actually I want to rell you—to read this textbook! But
do not read this text like you would a novel; you should not read it fast and you
should not skip anything. Think of it as a workbook. By this I mean that mathemat-
ics should always be read with pencil and paper at the ready because, most likely, you
will have to work your way through the examples and the discussion. Read—oops,
work—all the examples in a section before attempting any of the exercises; the ex-
amples are constructed to illustrate what I consider the most important aspects of the
section, and therefore, reflect the procedures necessary to work most of the problems
in the exercise sets. I tell my students when reading an example, cover up the solu-
tion; try working it first, compare your work against the solution given, and then
resolve any differences. I have tried to include most of the important steps in each
example, but if something is not clear you should always try—and here is where
the pencil and paper come in again—to fill in the details or missing steps. This may
not be easy, but that is part of the learning process. The accumulation of facts fol-
lowed by the slow assimilation of understanding simply cannot be achieved without
a struggle.

Specifically for you, a Student Resource and Solutions Manual (SRSM) is avail-
able as an optional supplement. In addition to containing solutions of selected prob-
lems from the exercises sets, the SRSM has hints for solving problems, extra exam-
ples, and a review of those areas of algebra and calculus that I feel are particularly
important to the successful study of differential equations. Bear in mind you do not
have to purchase the SRSM; by following my pointers given at the beginning of most
sections, you can review the appropriate mathematics from your old precalculus or
calculus texts.

In conclusion, I wish you good luck and success. [ hope you enjoy the text and
the course you are about to embark on—as an undergraduate math major it was one
of my favorites because I liked mathematics that connected with the physical world.
If you have any comments, or if you find any errors as you read/work your way
through the text, or if you come up with a good idea for improving either it or the
SRSM, please feel free to either contact me or my editor at Brooks/Cole Publishing
Company:

charlie.vanwagner @cengage.com

TO THE INSTRUCTOR

WHAT IS NEW IN THIS EDITION?

First, let me say what has nor changed. The chapter lineup by topics, the number and
order of sections within a chapter, and the basic underlying philosophy remain the
same as in the previous editions.

xi
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PREFACE

In case you are examining this text for the first time, Differential Equations with
Boundary-Value Problems, 7th Edition, can be used for either a one-semester course
in ordinary differential equations, or a two-semester course covering ordinary and
partial differential equations. The shorter version of the text, A First Course in
Differential Equations with Modeling Applications, 9th Edition, ends with
Chapter 9. For a one-semester course, I assume that the students have successfully
completed at least two-semesters of calculus. Since you are reading this, undoubt-
edly you have already examined the table of contents for the topics that are covered.
You will not find a “suggested syllabus” in this preface; I will not pretend to be so
wise as to tell other teachers what to teach. I feel that there is plenty of material here
to pick from and to form a course to your liking. The text strikes a reasonable bal-
ance between the analytical, qualitative, and quantitative approaches to the study of
differential equations. As far as my “underlying philosophy” it is this: An under-
graduate text should be written with the student’s understanding kept firmly in
mind, which means to me that the material should be presented in a straightforward,
readable, and helpful manner, while keeping the level of theory consistent with the
notion of a “first course.”

For those who are familiar with the previous editions, I would like to mention a
few of the improvements made in this edition.

* Contributed Problems Selected exercise sets conclude with one or two con-
tributed problems. These problems were class tested and submitted by in-
structors of differential equations courses and reflect how they supplement
their classroom presentations with additional projects.

* Exercises Many exercise sets have been updated by the addition of new prob-
lems to better test and challenge the students. In like manner, some exercise
sets have been improved by sending some problems into early retirement.

* Design This edition has been upgraded to a four-color design, which adds
depth of meaning to all of the graphics and emphasis to highlighted phrases.
I oversaw the creation of each piece of art to ensure that it is as mathemati-
cally correct as the text.

* New Figure Numeration It took many editions to do so, but I finally became
convinced that the old numeration of figures, theorems, and definitions had to
be changed. In this revision I have utilized a double-decimal numeration Sys-
tem. By way of illustration, in the last edition Figure 7.52 only indicates that
itis the 52nd figure in Chapter 7. In this edition, the same figure is renumbered
as Figure 7.6.5, where

Chapter Section
W

7.6.5 <— Fifth figure in the section

I feel that this system provides a clearer indication to where things are, with-
out the necessity of adding a cumbersome page number.

* Projects from Previous Editions Selected projects and essays from past
editions of the textbook can now be found on the companion website at
academic.cengage.com/math/zill.

STUDENT RESOURCES

* Student Resource and Solutions Manual, by Warren S. Wright, Dennis G. Zill,
and Carol D. Wright (ISBN 0495385662 (accompanies A First Course in
Differential Equations with Modeling Applications, 9e), 0495383163 (ac-
companies Differential Equations with Boundary-Value Problems, 7¢)) pro-
vides reviews of important material from algebra and calculus, the solution of
every third problem in each exercise set (with the exception of the Discussion
Problems and Computer Lab Assignments), relevant command syntax for
the computer algebra systems Mathematica and Maple, lists of important
concepts, as well as helpful hints on how to start certain problems.
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* DE Tools is a suite of simulations that provide an interactive, visual explo-
ration of the concepts presented in this text. Visit academic.cengage.com/
math/zill to find out more or contact your local sales representative to ask
about options for bundling DE Tools with this textbook.

INSTRUCTOR RESOURCES

* Complete Solutions Manual, by Warren S. Wright and Carol D. Wright (ISBN
049538609X), provides worked-out solutions to all problems in the text.

* Test Bank, by Gilbert Lewis (ISBN 0495386065) Contains multiple-choice
and short-answer test items that key directly to the text.
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INTRODUCTION TO DIFFERENTIAL

EQUATIONS

1.1 Definitions and Terminology

1.2 Initial-Value Problems

1.3 Differential Equations as Mathematical Models
CHAPTER 1 IN REVIEW

The words differential and equations certainly suggest solving some kind of
equation that contains derivatives y’, y”, . . . . Analogous to a course in algebra and
trigonometry, in which a good amount of time is spent solving equations such as
x> 4+ 5x + 4 = 0 for the unknown number x, in this course one of our tasks will be
to solve differential equations such as y” + 2y’ + y = 0 for an unknown function
y = ¢W.

The preceding paragraph tells something, but not the complete story, about the
course you are about to begin. As the course unfolds, you will see that there is more
to the study of differential equations than just mastering methods that someone has
devised to solve them.

But first things first. In order to read, study, and be conversant in a specialized
subject, you have to learn the terminology of that discipline. This is the thrust of the
first two sections of this chapter. In the last section we briefly examine the link
between differential equations and the real world. Practical questions such as How
fast does a disease spread? How fast does a population change? involve rates of
change or derivatives. As so the mathematical description—or mathematical
model —of experiments, observations, or theories may be a differential equation.



CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

1.1

DEFINITIONS AND TERMINOLOGY

REVIEW MATERIAL

e Definition of the derivative

¢ Rules of differentiation

e Derivative as a rate of change

¢ First derivative and increasing/decreasing
e Second derivative and concavity

INTRODUCTION The derivative dy/dx of a function y = ¢(x) is itself another function ¢’ (x)
found by an appropriate rule. The function y = " is differentiable on the interval (—2, %), and
by the Chain Rule its derivative is dy/dx = 0.2xe"'*. If we replace ¢'* on the right-hand side of
the last equation by the symbol y, the derivative becomes

Y _ 02 (1)
= U.ZLXY.
dx )

Now imagine that a friend of yours simply hands you equation (1)—you have no idea how it was
constructed—and asks, What is the function represented by the symbol y? You are now face to face
with one of the basic problems in this course:

How do you solve such an equation for the unknown function y = ¢(x)?

A DEFINITION The equation that we made up in (1) is called a differential
equation. Before proceeding any further, let us consider a more precise definition of
this concept.

DEFINITION 1.1.1 Differential Equation

An equation containing the derivatives of one or more dependent variables,
with respect to one or more independent variables, is said to be a differential
equation (DE).

To talk about them, we shall classify differential equations by type, order, and
linearity.

CLASSIFICATION BY TYPE If an equation contains only ordinary derivatives of
one or more dependent variables with respect to a single independent variable it is
said to be an ordinary differential equation (ODE). For example,

A DE can contain more
than one dependent variable
y Y
dy _ d’y dy dx dy
— + 5y = ¢, =~ — —+ 6y =0, and —+——=2xty (2)
dx dx=  dx dt  dt

are ordinary differential equations. An equation involving partial derivatives of
one or more dependent variables of two or more independent variables is called a
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partial differential equation (PDE). For example,

Pu 0u Pu  u au du av
—S+t—==0, —S==-2— md —=-— (3)
0x- dy- dx- Jar- Jt dy ox

are partial differential equations.”

Throughout this text ordinary derivatives will be written by using either the
Leibniz notation dy/dx, d>y/dx*, d*y/dx?, . .. or the prime notation y’, y", y", . . ..
By using the latter notation, the first two differential equations in (2) can be written
a little more compactly as y' + Sy = ¢* and y” — y’ + 6y = 0. Actually, the prime
notation is used to denote only the first three derivatives; the fourth derivative is
written y® instead of y””. In general, the nth derivative of y is written d"y/dx" or y".
Although less convenient to write and to typeset, the Leibniz notation has an advan-
tage over the prime notation in that it clearly displays both the dependent and
independent variables. For example, in the equation

unknown function
or dependent variable
dzxr
~ + 16x =0
dr?
L independent variable

it is immediately seen that the symbol x now represents a dependent variable,
whereas the independent variable is 7. You should also be aware that in physical
sciences and engineering, Newton’s dot notation (derogatively referred to by some
as the “flyspeck”™ notation) is sometimes used to denote derivatives with respect
to time 7. Thus the differential equation d”s/dt> = —32 becomes § = —32. Partial
derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, with the subscript notation the second equation in
(3) becomes it = u,; — 2u,.

CLASSIFICATION BY ORDER The order of a differential equation (either
ODE or PDE) is the order of the highest derivative in the equation. For example,

second order — n first order

d’y d})3 .
o S(dx 4y = e

is a second-order ordinary differential equation. First-order ordinary differential
equations are occasionally written in differential form M(x, y) dx + N(x, y) dy = 0.
For example, if we assume that y denotes the dependent variable in
(v — x) dx + 4xdy = 0, then y' = dy/dx, so by dividing by the differential dx, we
get the alternative form 4xy’" + y = x. See the Remarks at the end of this section.

In symbols we can express an nth-order ordinary differential equation in one
dependent variable by the general form

Fx, 3, ¥ 5w ) = 0, 4)

where F is a real-valued function of n + 2 variables: x, y, y', . . ., ¥ For both prac-
tical and theoretical reasons we shall also make the assumption hereafter that it is
possible to solve an ordinary differential equation in the form (4) uniquely for the

“Except for this introductory section, only ordinary differential equations are considered in A First
Course in Differential Equations with Modeling Applications, Ninth Edition. In that text the

word equation and the abbreviation DE refer only to ODEs. Partial differential equations or PDEs
are considered in the expanded volume Differential Equations with Boundary-Value Problems,
Seventh Edition.
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highest derivative y" in terms of the remaining n + 1 variables. The differential
equation
d"y
— = (%9, ..., YD), (5)
Friani ] )
where fis a real-valued continuous function, is referred to as the normal form of (4).
Thus when it suits our purposes, we shall use the normal forms

dy _ d*y _ ’

— = f(x,y) and — = f(x,y,y")

dx dx- C
to represent general first- and second-order ordinary differential equations. For example,
the normal form of the first-order equation 4xy’ + y = xisy’ = (x — y)/4x; the normal
form of the second-order equation y” — y" + 6y = 0is y" = y' — 6y. See the Remarks.

CLASSIFICATION BY LINEARITY An nth-order ordinary differential equation (4)
is said to be linear if F is linear in y, y', . . ., y"”. This means that an nth-order ODE is

linear when (4) is a,(x)y" + a,—1(x)y"" " + - - - + a;(x)y’ + ap(x)y — g(x) =0 or
a n. dnf l. 3 d.\v

a,(0) —— i, () —= + o= £ 4,00~ + @Dy = g&). (6)
dx? dx" dx

Two important special cases of (6) are linear first-order (n = 1) and linear second-
order (n = 2) DEs:
dy d?y dy
a;(x) — + ay(x)y = g(x) and a,(x)— + a(x) — + ay(x)y = gx). (7)
dx dx* dx
In the additive combination on the left-hand side of equation (6) we see that the char-
acteristic two properties of a linear ODE are as follows:

e The dependent variable y and all its derivatives y’, v”, . . ., y"" are of the
first degree, that is, the power of each term involving y is 1.

e The coefficients ag, ay, . . ., a, of y,y', ..., y" depend at most on the
independent variable x.

The equations

d3y dy 5 .
— +x——5y=¢
dx? dx )

(y —x)dx +4xdy=0, y"—2y+y=0, and
are, in turn, linear first-, second-, and third-order ordinary differential equations. We
have just demonstrated that the first equation is linear in the variable y by writing it in
the alternative form 4xy’ + y = x. A nonlinear ordinary differential equation is sim-
ply one that is not linear. Nonlinear functions of the dependent variable or its deriva-
tives, such as sin y or ¢*’, cannot appear in a linear equation. Therefore

nonlinear term: nonlinear term: nonlinear term:

coefficient depends on ) nonlinear function of y power not |

| l
d?y ) d*y
(1 —y)y + 2y = ¢, — +siny =0, and =71 ¥
o - dx? : dx :

2=
are examples of nonlinear first-, second-, and fourth-order ordinary differential equa-
tions, respectively.

SOLUTIONS As was stated before, one of the goals in this course is to solve, or
find solutions of, differential equations. In the next definition we consider the con-
cept of a solution of an ordinary differential equation.



