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Foreword

NMR is a complicated business. When we want to learn the trade, being fascinated
by all these wonderful experiments the NMR experts tell us are simple to do, we get
confronted with mountains of information about pulses, flip angles, the rotating co-
ordinate frame, the density matrix, and more. How is it, that we cannot do NMR in the
same manner as we are used to operating a DVD player or some other sophisticated
technical gadget like a cell phone. Clearly, an NMR spectrometer is a bit more compli-
cated than a coffee machine, and so the instructions for operating a spectrometer are
not expected to be trivial. But is an NMR spectrometer really more complicated than a
cell phone? Probably not! Nevertheless we can operate a mobile phone without know-
ing the technical details about its function and the electronics inside. So why can we
not operate an NMR spectrometer and get decent results on a level of expertise similar
to that required using a cell phone?

Today one of the most challenging tasks is the miniaturization of NMR machines
for use as dedicated and personalized devices. Because the use of such compact de-
vices is comparatively new and these NMR devices become more popular, this book in-
tends to be a guide to their use and applications by providing the basic knowledge and
operating instructions to perform successful NMR measurements. The content focuses
on compact and mobile NMR machines for the analysis of materials and processes, be-
cause this technology is most likely to be in demand by investigators who have little to
no knowledge about NMR. Following a basic introduction to NMR and compact NMR
equipment in Chapter 1, the experimental set-up is discussed in Chapter 2. Several
general types of NMR experiments are described in Chapter 3. Representative appli-
cations of these experiments to liquids, polymers, biological tissue, porous media,
and objects from cultural heritage are collected in Chapters 4 to 8. For each case, a
description of the measurement and data evaluation procedures is given with refer-
ence to the principles and procedures explained in the preceding chapters. Each de-
scription follows the same pattern including the objective, the theoretical background,
the pulse sequences and parameters, beginners-level measurements, advanced-level
measurements, and data processing. It is hoped, the information given will help the
NMR novice to successfully conduct measurements with compact NMR equipment al-
though it is not quite yet at the level of operating a cell phone.

This book has benefitted from the help of many friends and members of the
Aachen NMR research group. They contributed earlier versions of some sections of
the book, helped with proof reading, checked the pulse sequences and phase tables,
and most importantly provided many of the experimental data given as examples
in the text. We thank Alina Adams, Sophia Anferova, Vladimir Anferov, Stephan
Appelt, Juliane Arnold, Maria Baias, Peter Bliimler, Federico Casanova, Ernesto
Danieli, Vasiliki Demas, Dan Demco, Gunnar Eidmann, Ralf Eymael, Stefan Gléggler,
Nicolae Goga, Andreas Guthausen, Gisela Guthausen, Agnes Haber, Rolf Haken,
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Song-1 Han, Christian Hedesiu, Volker Herrmann, Jiirgen Kolz, Kidist Hailu, Bharatam
Jagadeesh, Martin Klein, Kai Kremer, Rance Kwamen, Maxime Van Landeghem, Dirk
Oligschldger, Eva Paciok, Josefina Perlo, Juan Perlo, Pablo Prado, Gabriel Rata Doru,
Ralf Savelsberg, Udo Schmitz, Andrea Schweiger, Shatrughan Sharma, Siegfried Stapf,
Oscar Sucre, Yadoallah Teimouri, Jochen Vief3, Alexandra Voda, and Anette Wiesmath
for their scientific contributions to the contents of this book. Eiichi Fukushima, Tia
Ishi, Eva Paciok and Lutz Weihermiiller helped with proof reading early versions of
the book and demanding chapters. Individual figures were kindly supplied by Gisela
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1 Introduction to NMR

The chemist calls it NMR and the medical doctor MRI. Nuclear magnetic resonance
(NMR) is the most popular tool in chemistry to analyze molecular structures, and mag-
netic resonance imaging (MRI) is a non-invasive diagnostic tool in the hospital that
provides high-contrast images of tissues depicting the brain functions and the beat-
ing heart. In both cases large and expensive superconducting magnets are employed
(Fig. 1.0.1), which magnetize the object by aligning the atomic nuclei inside the mag-
net. The resulting magnetization can be triggered by radio frequency waves to rotate
around the direction of the magnetic field. Depending on the operating mode, the
frequency spectrum of the rotating nuclear magnetization provides the chemist with
molecular information and the medical doctor with anatomical images, while the ma-
terials scientist may be interested in the decay of the impulse response to learn about
physical properties of a solid object like a wet wall.

1.1 NMR: Nuclear Magnetic Resonance

NMR can be defined as a physical phenomenon which is utilized to investigate molec-
ular properties of matter by irradiating atomic nuclei in a magnetic field with electro-
magnetic radio waves. Many nuclear isotopes possess an angular momentum called
spin. In classical terms, spins appear to rotate around an axis like a bicycle wheel
(Fig. 1.1.2a). For atomic nuclei, however, the somewhat unusual laws of quantum me-
chanics apply. For example, every spin is associated with a magnetic moment like the

Figure 1.0.1. High-field NMR machines with superconducting magnets and compact, low-field ma-
chines with permanent magnets (insets). (a) Magnets for chemical analysis. (b) Magnets for mag-
netic resonance imaging (MRI). The patient or the object is positioned in the center of the magnet
hole. The bulky electronics of medical MRI machines are typically hidden in a separate room.
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Figure 1.1.1. Schematic drawing of 49 out of 10?2 proton spins which are aligned in a magnetic field.
(a) Each spin appears to rotate or ‘precess’ around the direction of the magnetic field in a manner
similar to a spinning bicycle wheel, which precesses around the direction of the gravitational field
(Fig. 1.1.2a). (b) The up and down states of the spins are more easily recognized when only the part
of the spin vector parallel to the direction of the magnetic field is drawn. Because each spin is a
magnet, each of these arrows represents a magnet. The nuclear magnetization M is the sum of the
magnetizations from each component magnet.

needle of a compass. Depending on the magnitude of the spin, it can align with a mag-
netic field in different stable orientations, which differ in their inclination angles with
respect to the magnetic field and therefore also differ in their energies (Fig. 1.1.1a). Pro-
tons, the most abundant nuclear spins in organic matter, align in two states, called up
(1) and down (|). The relative numbers n; and n, of spins for the two states with ener-
gies E; and E| follow the Boltzmann distribution, where ky is the Boltzmann constant
and T is the temperature in Kelvin,

% = exp{-(E, - E;)/(kgT)}. (1.1.1)

The nuclear magnetization M of a macroscopic sample with some 10% spins is formed
by the difference n; —n, of the number of spins with different orientations (Fig. 1.1.1b).

Because the resulting magnetization M is composed of an unimaginably large
number of quantum mechanical entities, it behaves like a classical magnet, which
spins around its magnetization axis. It interacts with a magnetic field B, in the same
way as a gyroscopee.g., in the way a spinning bicycle wheel interacts with the grav-
itational field (Fig. 1.1.2a): When not aligned with the direction of the field, the mag-
netization axis rotates around the direction of the field (Fig. 1.1.2b). This rotation is
called precession. The precession frequency or Larmor frequency wy, is proportional to
the strength B, of the applied field,

Wy =21V, =YB, (1.1.2)

where the gyromagnetic ratio y is a constant specific to the type of atomic nucleus,
and v, = (E; - E;)/h, where h is Planck’s constant. For example, the frequency v, for



