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Preface to the fourth edition

A considerable amount of new material has been added to this edition.
There is an extensive discussion of real analytic functions of several variables
in Chapter 3. This permits estimation of the size of the domain of existence
in the Cauchy-Kowalevski theorem. A first application of these estimates
consists in a rigorous proof of a new version of Holmgren’s uniqueness
theorem for linear analytic partial differential equations (only sketched in
the earlier editions). As another application (following Schauder) we give a
second proof for existence of solutions of the initial value problem for
symmetric hyperbolic systems in Chapter 5. Chapter 6 now includes a more
detailed study of the Hilbert spaces H4(Q) with applications to the boundary
behavior of solutions of the Dirichlet problem in higher dimensions. To
Chapter 7 there has been added a proof of Widder’s theorem on non-negative
solutions of the heat equation. Finally, a new chapter, Chapter 8, contains
H. Lewy’s construction of a linear differential equation without solutions.
There are also more problems, designed, in part, to extend the material
discussed in the text.

I am particularly indebted to my colleague Percy A. Deift of the Courant
Institute of New York University, to Prof. A. Garder of the Southern Illinois
University at Edwardsville, Illinois, and to Dr. George Dassios of the
National Technical University of Athens, Greece, for taking the trouble to
compile lists of errors in the third edition. I hope that these have all been
corrected and not too many new ones added in the present edition.

Beaverbrook,
Wilmington, New York FRITZ JOHN
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The Single First-Order Equation*

1. Introduction

A partial differential equation (henceforth abbreviated as P.D.E.) for a
function u(x,y,...) is a relation of the form

F(X,0, sty Uy Uyl ) =0, (1.1)
where F is a given function of the independent variables x,y,..., and of

the “unknown” function « and of a finite number of its partial derivatives.
We call u a solution of (1.1) if after substitution of u(x,y,...) and its partial
derivatives (1.1) is satisfied identically in x,y,... in some region & in the
space of these independent variables. Unless the contrary is stated we
require that x,y, ... are real and that « and the derivatives of u occurring in
(1.1) are continuous functions of x,y,... in the real domain Q.7 Several
P.D.E.s involving one or more unknown functions and their derivatives
constitute a system.

The order of a P.D.E. or of a system is the order of the highest
derivative that occurs. A P.D.E. is said to be linear if it is linear in the
unknown functions and their derivatives, with coefficients depending on
the independent variables x,y,.... The P.D.E. of order m is called quasi-
linear if it is linear in the derivatives of order m with coefficients that
depend on x,y,... and the derivatives of order <m.

*([6]. [13]. [27). [31])

tFor simplicity we shall often dispense with an explicit description of the domain Q.
Staternents made then apply “locally,” in a suitably restricted neighborhood of a point of
Xy ...-space.
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2. Examples

Partial differential equations occur throughout mathematics. In this section
we give some examples. In many instances one of the independent vari-
ables is the time, usually denoted by ¢, while the others, denoted by
X1, Xg-.-5 X, (OF by x,y,z when n<3) give position in an n-dimensional
space. The space differentiations often occur in the particular combination

2 2
S Q1)
dxi ax;,

known as the Laplace operator. This operator has the special property of

being invariant under rigid motions or equivalently of not being affected

by transitions to other cartesian coordinate systems. It occurs naturally in

expressing physical laws that do not depend on a special position.

(i) The Laplace equation in n dimensions for a function u(x,,...,x,) is
the linear second-order equation

Au=u,  +u,  +--+u =0 (2.2)

X\ X) XX

This is probably the most important individual P.D.E. with the widest
range of applications. Solutions u are called potential functions or harmonic
functions. For n=2, x,=x, x,=y, we can associate with a harmonic
function u(x,y) a “conjugate” harmonic function v(x,y) such that the
first-order system of Cauchy—Riemann equations

u=v, U=-0, (2.3)

is satisfied. A real solution (u,v) of (2.3) gives rise to the analytic function

J(@2)=f(x+iy)=u(x.y)+iv(x.y) (24)

of the complex argument z=x+iy. We can also interpret (u(x,y),

— v(x,y)) as the velocity field of an irrotational, incompressible flow. For

n=3 equation (2.2) is satisfied by the velocity potential of an irrotational

incompressible flow, by gravitational and electrostatic fields (outside the

attracting masses or charges), and by temperatures in thermal equilibrium.
(ii) The wave equation in n dimensions for u=u(x,,...,x,,1) is

u,=c*Au (2.5)

(c=const.>0). It represents vibrations of strings or propagation of sound
waves in tubes for n=1, waves on the surface of shallow water for n=2,
acoustic or light waves for n=3.

(iii) Maxwell's equations in vacuum for the electric vector E =(E, E,, E;)
and magnetic vector H =(H,, H,, H,) form a linear system of essentially 6
first-order equations

eE,=curl H, pH,=-curlE (2.6a)
divE=divH=0 (2.6b)
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with constants ¢, p. (If relations (2.6b) hold for 1 =0, they hold for all 7 as a
consequence of relations (2.6a)). Here each component E, H, satisfies the
wave equation (2.5) with c2=1/¢gp.

(iv) Elastic waves are described classically by the linear system

%, _ A+ (b )2 (d 27)
Pz =k U+ ( +u)§x7( ivu) 2

(i=1,2,3), where the u,(x,, x,, x5, 1) are the components of the displacement
vector u, and p is the density and A,p the Lamé constants of the elastic
material. Each y; satisfies the fourth-order equation

3 A+2p )( 3z )
— - A\ — ——A}y=0, 2.8

( or? P ar e ) @8)
formed from two different wave operators. For elastic equilibrium (u,=0)
we obtain the biharmonic equation

A =0, 2.9)
(v) The equation of heat conduction (“heat equation™)
u=kAu (2.10)

(k=const.>0) is satisfied by the temperature of a body conducting heat,
when the density and specific heat are constant.

(vi) Schridinger’s wave equation (n=3) for a single particle of mass m
moving in a field of potential energy V(x,y,z) is

iy, = — %Aw , (2.11)

where h=2xh is Planck’s constant.

The equations in the preceding examples were all linear. Nonlinear
equations occur just as frequently, but are inherently more difficult, hence
in practice they are often approximated by linear ones. Some examples of
nonlinear equations follow,

(vii) A minimal surface z =u(x,y) (i.e., a surface having least area for a
given contour) satisfies the second-order quasi-linear equation

(1+ w)uy, —2uu,u,, +(1+ u)u, =0. (2.12)
(viit) The velocity potential (x,y) (for velocity components ¢,,¢,) of a
two-dimensional steady, adiabatic, irrotational, isentropic flow of density p

satisfies
(1-c 72026 —2¢ 20,06, +(1— ¢ 202)d,, =0, (2.13)
where ¢ is a known function of the speed q=‘/¢f+¢y2 . For example

r=1- 72 L (2.14)

for a polytropic gas with equation of state
p=Ap". (2.15)
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(ix) The Navier—Stokes equations for the viscous flow of an incompress-
ible liquid connect the velocity components u, and the pressure p:

S L% .\ a 2.16
Wt Tx, = Tk YA (2.16a)
S M, 2.16b
o T, T (2.16b)

where p is the constant density and y the kinematic viscosity.
(x) An example of a third-order nonlinear equation for a function u(x,?)
is furnished by the Korteweg—de Vries equation

u +cuu, +u,, =0 (2.17)

first encountered in the study of water waves.

In general we shall try to describe the manifold of solutions of a P.D.E.
The results differ widely for different classes of equations. Meaningful
“well-posed” problems associated with a P.D.E. often are suggested by
particular physical interpretations and applications.

3. Analytic Solution and Approximation Methods
in a Simple Example*

We illustrate some of the notions that will play an important role in what
follows by considering one of the simplest of all equations

u +cu, =0 3.0
for a function u=u(x,t), where ¢ =const. >0. Along a line of the family
x—ct=const.=§ (3.2)
(“characteristic line” in the xt-plane) we have for a solution « of (3.1)
du _d — -
@ u(ct+&t)=cu, +u =0,

Hence u is constant along such a line, and depends only on the parameter
¢ which distinguishes different lines. The general solution of (3.1) then has
the form

u(x,t)=f(§)=f(x - ). (33)
Formula (3.3) represents the general solution u uniquely in terms of its
initial values

u(x,0)=f(x). 34

Conversely every u of the form (3.3) is a solution of (3.1) with initial values
f provided f is of class C'(R). We notice that the value of u at any point

({181, 20]. [25]), [29D)
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(x.1)

x—ct=§

s

Figure 1.1

(x,?) deperds only on the initial value f at the single argument £=x—¢t,
the abscissa of the point of intersection of the characteristic line through
(x, 1) with the initial line, the x-axis. The domain of dependence of u(x,t) on
the initial values is represented by the single point & The influence of the
initial values at a particular point £ on the solution u(x,?) is felt just in the
points of the characteristic line (3.2). (Fig. 1.1)

If for each fixed ¢ the function u is represented by its graph in the
xu-plane, we find that the graph at the time t = T is obtained by translating
the graph at the time ¢=0 parallel to the x-axis by the amount cT:

u(x,0)=u(x+cT,T)=f(x).

The graph of the solution represents a wave propagating to the right with
velocity ¢ without changing shape. (Fig. 1.2)

We use this example with its explicit solution to bring out some of the
notions connected with the numerical solution of a P.D.E by the method of
finite differences. One covers the xz-plane by a rectangular grid with mesh
size h in the x-direction and & in the t-direction. In other words one
considers only points (x, ) for which x is a multiple of A and ¢ a multiple
of k. It would seem natural for purposes of numerical approximation to
replace the P.D.E. (3.1) by the difference equation

o(x,t+k)—o(x,1) R o(x+h,t)—v(x,1) _

- c ; 0. (3.5)
u
u(x, o) u(x,T)
X
X x +¢cT

Figure 1.2
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Formally this equation goes over into v, +cv, =0 as h,k—0. We ask to
what extent a solution v of (3.5) in the grid points with initial values

v(x.0)=f(x) (3.6)

approximates for small A,k the solution of the initial-value problem (3.1),
(3.4).
Setting A=k /h, we write (3.5) as a recursion formula

v, t+k)y=(1+Ac)v(x,1)—Aco(x+ h,1) 3.7

expressing v at the time ¢+ k in terms of v at the time ¢. Introducing the
shift operator E defined by

Ef(x)=f(x+h), (3.8)
(3.7) becomes
o(x,t+ k)=((1+Ac) = AcE )o(x,1) (3.8a)

for ¢t=nk this immediately leads by iteration to the solution of the
initial-value problem for (3.5):

o(x,1)=0v(x,nk)=((1+Ac)—AcE)"v(x,0)

= > (2)(1+A)"(=AcE)" ™ "f(x)

m=0

= 3 ()" (A T (nmm). (9)

m=0

Clearly the domain of dependence for v(x,f)=v(x,nk) consists of the set
of points

x, x+h, x+2h, ..., x+nh (3.10)

on the x-axis, all of which lie between x and x + nh. The domain of the
differential equation solution consists of the point £ = x — ct = x — cinh,
which lies completely outside the interval (x,x+ nh). It is clear that v for
h,k—0 cannot be expected to converge to the correct solution u of the
differential equation, since in forming v(x,7) we do not make use of any
information on the value of f(£), which is vital for determining u(x,f), but
only of more and more information on f in the interval (x,x +(¢/A)) which
is irrelevant. The difference scheme fails the Courant—Friedrichs— Lewy test,
which requires that the limit of the domain of dependence for the dif-
ference equation contains the domain of dependence for the differential
equation.

That the scheme (3.5) is inappropriate also is indicated by its high
degree of instability. In applied problems the data f are never known with
perfect accuracy. Moreover, in numerical computations we cannot easily
use the exact values but commit small round-off errors at every step. Now
it is clear from (3.9) that errors in f of absolute value ¢ with the proper
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(alternating) sign can lead to a resulting error in v(x, £}=v{x,nk) of size

n
e 2 (2 )+A)™ (e ™" =(1+2c)"e. (3.11)
m=0
Thus for a fixed mesh ratio A the possible resulting error in v grows
exponentially with the number # of steps in the 7-direction.
A more appropriate difference scheme uses “backward” difference
quotients:

v(x,t+klz—v(x,t) +CU(X,’)“Z(X_"”) =0 (3.12)

or symbolically
o(x,t+k)=((1=Ac) +AcE ~o(x,1). (3.13)

The solution of the initial-value problem for (3.13) becomes

v(x,1)=v(x,nk)= i (::1)(1—)\c)"'()\c)"""f(x—(n—-m)h). (3.14)

m=0

In this scheme the domain of dependence for v(x,7) on f consists of the
points

X, x—h, x=2h, ..., x—nh=x-% (3.15)

Letting A,k—0 in such a way that the mesh ratio A is held fixed, the set
(3.15) has as its limit points the interval [x—(¢/A),x] on the x-axis. The
Courant-Friedrichs—Lewy test is satisfied, when this interval contains the
point £=x — ¢t, that is when the mesh ratio A satisfies

AcL L. (3.16)

Stability of the scheme under the condition (3.16) is indicated by the fact
that by (3.14) a maximum error of size ¢ in the initial function f results in a
maximum possible error in the value of v(x,#)=v(x,nk) of size

e 2 (2)1-A)"(Ae)" " =e((1-Ac) +Ac)"=e. (3.17)
m=0

We can prove that the v represented by (3.14) actually converges to
u(x,t)=f(x—ct) for h,k—0 with k/h=A\ fixed, provided the stability
criterion (3.16) holds and f has uniformly bounded second derivatives. For

that purpose we observe that u(x, t) satisfies

[u(x,t+k)—(1—Ac)u(x,t)—Acu(x~ h,1)|
=|f(x—ct—ck)—(1=Ac)f(x—ct)—Acf(x—ct—h)| < Kn?, (3.18)
where

K=1(cA2+Xc)sup| ", (3.19)
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as is seen by expanding f about the point x — cz. Thus, setting w=u—v we
have

[w(x,t+k)— (1 =Ac)w(x, ) —Aew(x — h,1)| < Kh?
and hence
sup |w(x,t+ k)| <(1—Ac) sup |w(x, )| +Acsup |w(x — h,t)| + Kh?

= sup tw(x, )|+ Kh?. . (3.20)

Applying (3.20) repeatedly it follows for 1= nk that

[u(x,t)— v{x,1)] < sup|w(x, nk)|

< sup |w(x,0)|+ nKh?= KTth,

since w{x,0)=0. Consequently w(x,)—0 as A—0, that is, the solution v of
the difference scheme (3.12) converges to the solution u of the differential
equation.

PROBLEMS

1. Show that the solution v of (3.12) with initial data f converges to u for h—0 and
a fixed A < 1/c, under the sole assumption that f is continuous. (Hint: Use the fact
that both u and v change by at most ¢ when we change f by at most ¢.)

2. To take into account possible round-off errors we assume that instead of (3.13) v
satisfies an inequality

fo(x,t1+ k) — (1 =Ac)o(x,1) —Aco(x — h,t)| < 6.
Show that for a prescribed 8 and for K given by (3.19) we have the estimate

Kth 1
|u(x,l)—v(x,l)|<T+X-h—8 (.21
assuming that (3.16) holds and that v(x,0)=f(x). Find values for A and h based
on this formula that will guarantee the smallest maximum error in computing

u(x,t).

3. Instability of a difference scheme under small perturbations does not exclude
the possibility that in special cases the scheme converges towards the correct
function, if no errors are permitted in the data or the computation. In particular
let f(x)=e** with a complex constant a. Show that for fixed x, ¢ and any fixed
positive A=k /h whatsoever both the expressions (3.9) and (3.14) converge for
n—oo towards the correct limit e®*~<V, (This is consistent with the
Courant-Friedrichs-Lewy test, since for an analytic f the values of f in any
interval determine those at the point § uniquely.)



