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Preface

In our book published in 1984 An Introduction to Infinite Dimensional Dy-
namical Systems-Geometric Theory, we presented some aspects of a geomet-
ric theory of infinite dimensional spaces with major emphasis on retarded
functional differential equations. In this book, the intent is the same. There
are new results on Morse-Smale systems for semiflows, persistence of hyper-
bolicity under perturbations, nonuniform hyperbolicity, monotone dynamical
systems, realization of vector fields on center manifolds and normal forms.
In addition, more attention is devoted to neutral functional differential equa-
tions although the theory is much less developed. Some parts of the theory
also will apply to many other types of equations and applications.

Jack K. Hale
Luis T. Magalhaes
Waldyr M. Oliva
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1 Introduction

There is an extensive theory for the flow defined by dynamical systems gen-
erated by continuous semigroups 7' : R* x M — M, T(t,z): = T(t)z, where
T(t): M — M, Rt =[0,00), and M is either a finite dimensional compact
manifold without boundary or a compact manifold with boundary provided
that the flow is differentiable and transversal to the boundary. The basic
problem is to compare the flows defined by different dynamical systems. This
comparison is made most often through the notion of topological equivalence.
Two semigroups 7" and S defined on M are topologically equivalent if there is
a homeomorphism from M to M which takes the orbits of T' onto the orbits
of S and preserves the sense of direction in time.

If the semigroups are defined on a finite dimensional Banach space X,
then extreme care must be exercised in order to compare the orbits with
large initial data and only very special cases have been considered. One way
to avoid the consideration of large initial data in the comparison of semigroups
is to consider only those semigroups for which infinity is unstable; that is,
there is a bounded set which attracts the positive orbit of each point in X.
In this case, there is a compact global attractor A(T) of the semigroup T}
that is, A(T') is compact invariant (T'(¢).A(T) = A(T) for all t > 0) and, in
addition, for any bounded set B C X, dist x(T'(t)B, A(T)) — 0 as t — oo.
In such situations, it is often possible to find a neighborhood M of A(T) for
which the closure is a compact manifold with boundary and the boundary
is transversal to the flow. Therefore, the global theory of finite dimensional
dynamical systems can be applied.

We remark that the invariance of A(T") implies that, for each z € A(T),
we can define a bounded negative orbit (or a bounded backward extension)
through z; that is, a function ¢ : (—00,0] — X such that ¢(0) = a and,
for any 7 < 0, T(t)e(1) = p(t + 7) for 0 < t < —7. If the compact global
attractor A(T') exists, then it is given by

A(T) = {z € X : T(t)x is defined and bounded for ¢t € R}. (1.1)

Many applications involve semigroups T on a non-locally compact space
X; for example, semigroups generated by partial differential equations and
delay differential or functional differential equations (see for example [8], [78],
[86], [198] and the references therein). The first difficulty in the non-locally
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compact case is to decide how to compare two semigroups. It seems to be
almost impossible to make a comparison of all or even an arbitrary bounded
set of the space X. On the other hand, we can define in the non-locally
compact case the set 4(7) as in (1.1). This set will contain all of the bounded
invariant sets of T' and, under some reasonable conditions, should contain all
of the information about the limiting behavior of solutions. For this reason,
we make comparisons of semigroups only on A(7T"). This does not mean that
the transient behavior is unimportant, but only that our emphasis here is on
A(T). The following definition first appeared in a paper by Hale (see [73]) in
1981.

Definition 1.0.1. We say that a semigroup T on X is equivalent to a semi-
group S on X, T ~ S, if there is a homeomorphism h : A(T) — A(S) which
preserves orbits and the sense of direction in time.

We reemphasize that, in the definition of equivalence, we restrict to the
set A(T) and not to a neighborhood of A(T"). Due to the fact that we are not
able to take this full neighborhood, adaptation of the finite dimension theory
of dynamical systems to our setting is nontrivial. Also, we will need to impose
further restrictions on the classes of semigroups that will be considered.

If A(T') is not compact, there is very little known about general flows. If
A(T) is compact, then we can easily verify the following result.

Proposition 1.0.2. If A(T) is compact, then A(T) is the mazimal compact
invariant set. If, in addition, for each t > 0, T'(t) is one-to-one on A(T),
then T is a continuous group on A(T).

In a particular application, the semigroup defining the dynamical system
depends upon parameters. In the case of ordinary differential equations or
functional differential equations, the parameter could be a particular class of
vector fields. If the semigroup is generated by partial differential equations,
the parameters could be a class of vector fields or the boundary of the region
of definition or the boundary conditions or all of these. A basic problem
is to know if the flow defined by the a semigroup is preserved under the
above equivalence relation when one allows variations in the parameters.
More precisely, we make the following definitions.

Definition 1.0.3. Suppose that X is a complete metric space, A is a metric
space, T : A x R™ x X — X is continuous and, for each \ € A, let T} :
RT x X — X be defined by Tx(t)x = T(\ t,x) and suppose that Ty is a
continuous semigroup on X for each A € A. Define A(T\) as above. The
semigroup T is said to be A-stable if there is a neighborhood U C A of A
such that Ty ~ T, for each p € U. We say that Ty is a bifurcation point if
T is not A-stable.

The basic problem is to discuss detailed properties of the set A(T)), the
structure of the flow on A(T)) and the manner in which A(T)) changes
with A.
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Some basic questions that should be discussed are the following:

[y

. Is T generically one-to-one on A(Ty)7

. If T, is A-stable, is T’y one-to-one on A(T))?

3. For each z € A(T)), what are the smoothness properties of T(t)z in t?
For example, does it possess the same smoothness properties as the semi-
group has in z and or A?

. Is the Hausdorff dimension and capacity of A(T)) finite?

. When is A(T)) a manifold or the union of a finite number of manifolds?

. Can A(T)) be embedded in a finite dimensional manifold generically in A?

. Can A(T\) be embedded in a finite dimensional invariant manifold gener-
ically in A?

. Are Morse-Smale systems open and A-stable?

. Are Kupka—Smale semigroups generic in the class {T, A € A}7

[ ]

N O O

©

In these notes, we attempt to discuss these questions in some detail in order
to indicate how one can begin to obtain a geometric theory for dynami-
cal systems in infinite dimensions. We present some results which apply to
many types of situations including functional differential equations of re-
tarded and neutral type, quasilinear parabolic partial differential equations
and dissipative hyperbolic partial differential equations. Some of the more
detailed results are for a class of semigroups satisfying compactness and
smoothness hypotheses and are directly applicable to retarded functional
differential equations with finite delay, quasilinear parabolic equations and
more general situations. There are many important applications which do
not satisfy the compactness and smoothness hypotheses; for example, re-
tarded equations with infinite delay, neutral functional differential equations,
the linearly damped nonlinear wave equation as well as other equations of
hyperbolic type. Throughout, we will note the difficulties involved in the ex-
tensions to more general semigroups. As will be clear, the theory is still in
its infancy.

Our theory is presented for the case in which A(T") is compact. In Chap-
ter 2, we present conditions on the semigroup 7" and dissipative properties of
the flow which will imply that A(7T") is compact and, therefore, is the maxi-
mal compact invariant set. Also, we give conditions which are necessary and
sufficient for A(T") to be the compact global attractor.

In Chapter 3, we give the definitions and examples of retarded and neutral
functional differential equations on manifolds, discuss the basic properties of
the semigroups defined by these equations, the existence of compact global
attractors and the differences between these two types of equations.

In Chapter 4, we show that the compact global attractor has finite capac-
ity for a class of mappings which includes the time-one maps of retarded and
neutral functional differential equations, linearly damped hyperbolic equa-
tions as well as many other types of equations.

In Chapter 5, we give some examples illustrating the importance of dis-
cussing the manner in which the flow on the compact global attractor depends
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upon parameters. A rather complete investigation is made for a retarded func-
tional differential equation serving as a model in viscoelasticity and known as
the Levin-Nohel equation with the parameter being the relaxation function.
Also, a complete description is given for the flow on the attractor for a scalar
parabolic equation in one dimension. Some details in the proof are referred
to Chapter 10. A counter-example for the Hartman-Grobman theorem in the
setting of Hadamard derivatives is also described.

In Chapter 6, the definitions of Morse—Smale maps and flows are given.
The stability of Morse-Smale maps was proved in [87] and is reproduced
here. The stability for semiflows is a recent result appearing in [154] and,
as will be seen, there are some conditions imposed on the flow which involve
smoothness. These smoothness conditions are satisfied for retarded functional
differential equations and parabolic equations, but are not satisfied for neutral
functional differential equations and partial differential equations for which
the solutions do not smooth in time. It would be very interesting to extend
the results in this chapter to more general situations.

Chapter 7 is devoted to the persistence under perturbations for uniformly
hyperbolic invariant sets of semiflows, assuming the smoothness condition
mentioned above. The hypothesis that the flow is one-to-one on a compact
invariant set implies the existence of a conjugacy between perturbed and un-
perturbed semiflows; if the low on the invariant set is not one-to-one, one
obtains only a semi-conjugacy. Hyperbolic measures and nonuniform hyper-
bolicity together with the corresponding concepts of invariant manifolds are
discussed in the finite dimensional case with some remarks on perspectives
for the infinite dimensional setting.

Even though the flow defined by evolutionary equations defined by func-
tional differential equations and partial differential equations are defined on
an infinite dimensional space, the particular type of equation considered may
impose restrictions on the flow. This can play a very important role in the
development of the geometric theory and have an important impact on the
types of bifurcations that may occur. In Chapter 8, we characterize the flows
that can occur on center manifolds for retarded and neutral functional dif-
ferential equations. This chapter also contains a complete theory of normal
forms for these equations as well as abstract evolutionary equations with
delays with applications.

In Chapter 9, we give conditions under which the compact global attractor
will be a smooth manifold taking into account the recent literature on this
subject.

In the new Chapter 10 on monotonicity, we present a general class of
monotone operators for which it is possible to show that the stable and un-
stable manifolds of hyperbolic critical elements are transversal. Applications
are given to ordinary and parabolic partial differential equations as well as
their time and space discretizations. This chapter also contains a presentation
of the Morse decomposition of the flow on the compact global attractor for
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a differential delay equation with negative feedback. The proofs of all results
depend in a significant way upon a discrete Lyapunov function.

Chapter 11 on the Kupka-Smale Theorem as well as the Appendix on
Homotopy Index Theorem are essentially the same as in the 1984 book [87].

To assist the reader, we sometimes repeat concepts and theorems in var-
ious chapters.

We would like to thank a number of colleagues from several Institutions
who motivated and helped us with comments and suggestions when we were
writing and typing this text. Among them we mention Carlos Rocha, Luis
Barreira, Rui Loja Fernandes, Joao Palhoto de Matos, Pedro G. Henriques,
Pedro Girdo, Esmeralda Dias, Luiz Fichmann, Antonio Luis Pereira, Sérgio
Oliva, Dan Henry and Maria do Carmo Carbinatto. In a special acknowledg-
ment we want to say thanks to Teresa Faria who developed a complete theory
of normal forms in Chapter 8. Thanks also to the members of CAMGSD and
ISR of Instituto Superior Técnico (UTL), and for the partial support by FCT
(Portugal) through the program POCTIL.






2 Invariant Sets and Attractors

In this chapter, the basic theory of invariant sets and attractors is summarized
and many examples are given. Complete proofs may be found in [78] and the
references cited in the text.

Suppose that X is a complete metric space with metric d and let Rt =
[0,00), R~ = (—00,0]. A mapping 7 : Rt x X — X, (t,z) — T(t)z, is said
to be a C°-semigroup (or a continuous semiflow) (or a C°-dynamical system)
if
(i) T(0) =1,

(ii) T(t+s)=T()T(s),t,s € R,
(iii) The map (t,x) — T(t)x is continuous in ¢,z for (t,z) € R x X.

For any = € X, the positive orbit v (x) through z is defined as y*(z) =
Ui>oT'(t)x. A negative orbit v~ (x) through z is the image y(R™) of a contin-
uous function y : R~ — X such that, for any ¢t < s < 0, T'(s — t)y(t) = y(s).
A complete orbit y(x) through z is the union of v*(z) and a negative orbit
through .

Since the range of T'(t) need not be the whole space, to say that there is a
negative orbit through x may impose restrictions on z. Since T'(¢) may not be
one-to-one, there may be more than one negative orbit through z if one exists.
We define the negative orbit I'~(x) through z as the union of all negative
orbits through z. The complete orbit I'(x) through x is I'(x) = v+ (z)Ul'~ (z).

For any subset B of X, we let y7(B) = Uzepy (), '™ (B) = Ugep ' (z),
I'(B) = UzepI'(x) be respectively the positive orbit, negative orbit, complete
orbit through B.

The limiting behavior of T'(t) as t — oo is of fundamental importance.
For this reason, for z € X, we define w(x), the w-limit set of x or the w-limit
set of the positive orbit through z, as

w(z) = Nr2oChy* (T(7)z).

This is equivalent to saying that y € w(z) if and only if there is a sequence
tx — 0o as k — oo such that T'(tx)z — y as k — oo. In the same way, for
any set B C X, we define w(B), the w-limit set of B or the w-limit set of the
positive orbit through B, as

w(B) = Nr>oClyt (T(1)B).



8 2 Invariant Sets and Attractors

This is the same as saying that y € w(B) if and only if there are sequences
tx — 00 as k — o0, xx € B, such that T'(ty)zy — y as k — oo.

Analogously, we can define the a-limit set of a negative orbit v~ (x) or of
the negative orbit I'~(x) of a point x as well as the same concepts for a set
BCX.

We remark that w(B) D Uzepw(z), but equality may not hold. In fact,
suppose that f : R — R is a C''-function for which there is a constant M
such that zf(z) < 0 for |z| > M and consider the scalar ODE & = f(z).
For each € R, w(z) is an equilibrium point. If the zeros of f are simple,
then, for any interval B containing at least two equilibrium points, the set
Uzepw(z) is disconnected, whereas w(B) is an interval. For f(z) = z — 2?,
B = [-2,2], we have Uyepw(z) = {0, £1}, whereas w(B) = [-1,1].

To state a result about w-limit sets, we need some additional notation.
A set A C X is said to be invariant (under the semigroup T) if T(t)A = A
for t > 0. We say that a set A attracts a set B under the semigroup 7" if
limy o distx (7'(¢)B, A) = 0, where

distx (B, A) = sup distx (z, A) = sup inf distx (z,y).
zeB r€BYEA

Lemma 2.0.1. If B C X is a nonempty bounded set for which there is a
compact set J which attracts B, then w(B) is nonempty, compact, invariant
and attracts B. In addition, if w(B) C B, then

w(B) = ﬂgon(t)B.

In particular, if B C X is a nonempty subset of X and there is a to > 0 such
that Cly*(T(to)B) is compact, then w(B) is nonempty, compact, invariant
and w(B) attracts B. If B is connected, then w(B) is connected.

A compact invariant set A is said to be the mazimal compact invariant set if
every compact invariant set of 7" is contained in A. An invariant set A is said
to be a compact global attractorif A is a maximal compact invariant set which
attracts each bounded set of X. Notice that this implies that w(B) C A for
each bounded set B. It is easy to verify the following result.

Lemma 2.0.2. If A(T) is compact, then A(T) is the mazimal compact in-
variant set. If, for each x € X, v+ (x) has compact closure, then A(T) attracts
points of X. If, for any bounded set B C X, w(B) is compact and attracts
B, then A(T) is the compact global attractor. If T'(t) is one-to-one on A(T)
for each t > 0, then T is a continuous group on A(T).

To proceed further, we need some concepts of stability of an invariant set
J of a continuous semigroup T'. The set J is stable if, for any neighborhood
V of J, there is a neighborhood U of J such that T(¢)U C V for all t > 0.
The set J attracts points locally if there is a neighborhood W of J such that
J attracts points of W. The set J is asymptotically stable if it is stable and
attracts points locally. The set J is a local attractor or, equivalently, uniformly
asymptotically stable if it is stable and attracts a neighborhood of J.
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Lemma 2.0.3. An invariant set J is stable if, and only if, for any neighbor-
hood V of J, there is a neighborhood V' C V such that T(t)V' C V' for all
t > 0. A compact invariant set J is a local attractor if and only if there is a
neighborhood V' of J with T(t)V C V for allt > 0 and J attracts V.

The following basic result on the existence of the maximal compact in-
variant set is due to Hale, LaSalle and Slemrod (see [83]).

Theorem 2.0.4. If the semigroup T on X 1is continuous and there is a
nonempty compact set K that attracts compact sets of X and A = My>oT (1)K,
then A is independent of K and

(i) A is the mazimal compact invariant set,
(it) A is connected if X is connected,
(iii) A is stable and attracts compact sets of X.

It is possible to have a semigroup satisfying the conditions of Theorem
2.0.4 and yet the set A(T') is not a compact global attractor even though it
is the maximal compact stable invariant set. As noted by Hale [80],this can
be seen for linear semigroups on a Banach space X. In the statement of the
result, we let r(Eo(A)) denote the radius of the essential spectrum of a linear
operator A on a Banach space.

Theorem 2.0.5. If T is a linear C°-semigroup on a Banach space X and
the origin {0} attracts each point of X, then

(i) {0} is stable, attracts compact sets and is the mazimal compact invariant
set.
(i) v*(B) is bounded if B is bounded.
(iti) {0} is the compact global attractor if, and only if, there is a t; > 0 such
that r(Eo(T(t1))) < 1.
(iv) If there is a ty such that r(Ea(T(t1))) = 1, then the origin attracts com-
pact sets, but is not a compact global attractor.

If X is a Banach space and 7T is a continuous linear semigroup for which
there is a ¢; > 0 such that 7'(¢,) is a completely continuous operator, then
r(Eo(T(t1))) = 0. Property (iii) of Theorem 2.0.5 implies that {0} is the
compact global attractor if it attracts each point of X.

We give two examples of interesting evolutionary equations which satisfy
the conditions in (iv) of Theorem 2.0.5.

Ezample 2.0.6. (Neutral delay differential equation). Consider the neutral de-
lay differential equation

%[;L(t) —az(t—1)] +cz(t) =0, t=>0, (2.1)

where ¢, a are constants. For any ¢ € X = C([-1,0],R), X with the sup
norm, we can use this equation to define a function z(t,¢), ¢ > —1, with



