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Preface

Reversibility is the study of those elements of a group that are conjugate to
their own inverses. Reversible maps appear naturally in classical dynamics;
for instance, in the pendulum, the n-body problem, and billiards. They also
arise in less obvious ways in connection with problems in geometry, complex
analysis, approximation, and functional equations. When a problem has a con-
nection to a reversible map, this opens it to attack using dynamical ideas, such
as ergodic theory and the theory of flows. Reversibility has its origins in
work of Birkhoff, Arnol’d, Voronin, Sevryuk, Siegel, Moser, Smale, and De-
vaney, among others, mainly in the context of continuous dynamical systems
[8, 9, 10, 11, 31, 32, 66, 131, 211, 214, 237]. Devaney initiated the formal
study of smooth reversible systems, not necessarily derived from a Hamilto-
nian, and there has been considerable work on such systems. The main focus
has been on higher dimensions, and the systematic study of discrete reversible
systems in low dimensions is more recent. We concentrate here on the discrete
system theory, and on developments since the turn of the century.

The subject relates to involutions, conjugacy problems, and automorphism
groups. The reversible elements of a group are those elements that are con-
jugate to their own inverses, and the strongly-reversible elements are those
elements that are conjugate to their own inverses by involutions. Both types
of element have been studied in many contexts. For finite groups, the terms
real and strongly real are used instead of reversible and strongly reversible
[117, Section 9.1] because of the connections with real characters. Questions
of reversibility for classical groups have been addressed in works such as
[82, 150, 151, 153]. The authors of these papers use the term bireflectional
to describe a group comprised entirely of strongly-reversible maps. There is
a rich modern literature on reversibility in dynamical systems, which includes
[16, 66,159, 160, 162, 163, 164, 165, 198, 199, 205, 211]. Some authors in this

X



X Preface

field describe reversible elements as weakly reversible, and describe strongly-
reversible elements as reversible.

The book opens with a brief account of the origins of the subject in the
theory of reversible systems in physics, in finite group theory, and in topics
where the dynamics of a reversible map prove useful in tackling problems
that have no apparent dynamic connection. Then we proceed to a rapid review
of general facts about the reversible elements in a group, and the reversers of
these elements. The remainder of the text is a survey of (mostly) recent work on
reversibility in classes of groups in which there are often attractive geometric
properties. The groups we examine are finite groups, classical groups, compact
groups, isometry groups, certain groups of integer matrices, and larger groups:
the homeomorphism groups of the line and circle, the diffeomorphism group
of the line, formal power series groups, and groups of biholomorphic germs in
one variable.

The choice of topics reflects the expertise of the authors, and there are sub-
stantial results about some groups that we omit in order to keep this work
within reasonable limits. These include groups of polynomial automorphisms
(see for instance [15, 18, 103, 142]) and area preserving and symplectic maps
(see [17, 161, 204] and, in particular, the survey by Lamb and Roberts [164]).
We also neglect the long history of reversibility in ergodic theory. Arguably,
the relationship between reversibility and ergodic theory began with the work
of Halmos and von Neumann [127], who proved that in the group of invert-
ible measure-preserving transformations of a Borel probability space, those
transformations that are ergodic and have a discrete spectrum are strongly re-
versible. Halmos and von Neumann suggested that perhaps every element of
this group is reversible; however, this was shown not to be so by Anzai [7]. This
work was continued by Goodson, del Junco, Lema’nczyk, and Rudolph [108]
who found remarkably weak conditions in the group of invertible measure-
preserving transformations that ensure that the conjugating map of a reversible
transformation is an involution (so the transformation is strongly reversible).
For more on this topic, consult the work of Goodson [107, 108, 109, 110, 111,
112, 115], and for some recent applications of reversibility in ergodic theory,
see [1, 91]. Another significant collection of groups that we omit are the fi-
nite simple groups. The finite simple groups that consist entirely of reversible
(real) elements were classified by Tiep and Zalesski in [231], and it has re-
cently been shown [22, 81, 93, 121, 122, 153, 154, 202, 233] that these finite
simple groups composed entirely of reversible elements are in fact composed
entirely of strongly-reversible elements.

We only scratch the surface of discrete reversible systems, and give a taste
of their applications. There are several excellent accounts in books and surveys
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that are almost completely disjoint from ours, such as Sevryuk [211]. The sur-
vey of Lamb and Roberts [164] includes a substantial bibliography for the pe-
riod up to 1998. A good deal of the work is primarily concerned with physics,
such as that of Hawking, Lahiri, MacKay, Roy, Wigner, and some of Penrose.
We have little or nothing to say about this, nor about the equally interesting
philosophical aspects of reversibility, as reviewed and discussed, for instance,
in Nickel’s contribution to [83]. The subject of reversibility is massive, and we
cannot include all references. Major contributions have been omitted. We in-
clude a large bibliography with sources most relevant to the material we cover,
and the reader should refer to the above texts for references to other works.
The main dependencies between the chapters are described by the directed
graph below. One chapter depends on another if and only if there is a directed
path from the second of these chapters to the first. Chapter 2 (represented by
‘2. Basics’ in the graph) contains a small number of definitions that are used
throughout the text, but for the most part, notation is local to chapters.

3. Finite groups

5. Compact groups]

4. Classical groups 6. Isometry gruups]

7. Integer nmtrices]

9. Circle lmmeonwrphismsJ

8. Real homeomorphisms

11. Real diffeomorphisms]

10. Formal power series

12. Biholomorphic germs]

Each chapter finishes first with a Notes section, which includes references
and further material, and then an Open problems section. The Open problems
section contains unresolved issues about reversibility from that chapter, and
we hope this section will prove useful as a source of research problems, par-
ticularly for doctoral students.

In general, when we do not give the proof of a proposition, we indicate this
by putting the usual QED symbol O right after the statement. If a mature math-
ematician, the reader may take this as an indication that the proof is straightfor-
ward. If a student, he or she may take it as a suggestion for an exercise. In case
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we are quoting a substantial result from another source, without proof, we will
give the reference. We write the composition of elements f and g of a group
by fg. Sometimes we compose elements of a group with functions that do not
belong to the group, in which case we often use the symbol o to denote com-
position, for clarity. Occasionally we use the symbol - for multiplication, when
there is a chance that multiplication may be confused with group composition.

The content of this book owes much to the advice and help of our research
collaborators, especially Patrick Ahern, Nick Gill, Roman Lavicka, Frédéric
Le Roux, Maria Roginskaya, and Dmitri Zaitsev. We are also grateful to some-
time members of the Reversible Maps Group (Mary Boyce, Mary Hanley, Ying
Hou, Simon Joyce, Dennis O’Brien, Jestis San Martin, David Walsh, Richard
Watson) and other participants in our seminars, who helped us to refine some of
the ideas presented here. Special thanks are due to Javier Aramayona, Stefan
Bechtluft-Sachs, Kurt Falk, Xianghong Gong, John Murray, Azadeh Nikou,
and Claas Rover. It is a pleasure to acknowledge the support of Janice Love and
Anthony Waldron, on IT matters, and of Grainne O’Rourke for administrative
backup. We are grateful to NUI, Maynooth, and also to Science Foundation
Ireland, and the European Science Foundation, which provided financial sup-
port for our research, under grants RFP/05/MAT0003 and the HCAA Network,
respectively. We thank the Open University and the London Mathematical So-
ciety for funding a research visit in September 2011. The first author would
also like to thank Tirthankar Bhattacharya and the Indian Institute of Science,
Bangalore, and Caroline Series and the Mathematical Institute, Warwick, for
their hospitality while the work was in gestation. We would both like to ac-
knowledge the help and support of the series editor, the anonymous referees,
and the editorial staff at Cambridge University Press. More than anyone else,
we owe an unmeasurable debt to our beloved Lise and Ellie.

Anthony G. O’Farrell
National University of Ireland, Maynooth

Ian Short
The Open University

July 2014
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Origins

To motivate our study of reversibility, we describe how the concept originates
in dynamical systems, finite group theory, and in a subject known as hidden
dynamics. Full details of these topics are beyond the scope of this book, and
none of the material in this chapter is needed later on.

1.1 Origins in dynamical systems

Here we discuss several examples of reversibility in the study of conservative
dynamical systems.

1.1.1 The harmonic oscillator

The simple pendulum is approximately modelled by the harmonic oscillator:
the system in which a particle on the real line R is attracted to the origin by
a force directly proportional to its distance from the origin. This system also
models a weight suspended from a spring, oscillating about its equilibrium
position (in which case the relationship between the force and distance is given
by Hooke’s law). Newton’s second law states that the rate of change of the
momentum of a body is equal to the force applied to it. Momentum is mass
times velocity, so this gives the differential equations

<
gt * (1.1)
q P

dt m’

where g represents the position of the particle, p its momentum (both p and ¢
are functions of time 7), Kk is the constant of proportionality between the force
and the distance to the origin, and m is the particle’s mass.



2 Origins

It follows at once that the quantity

2 2
14 Kq
H(an):%ﬂL—z )

called its Hamiltonian (which is, physically, the energy of the system, given
by the sum of its kinetic and potential energy). has derivative zero with respect
to time, and hence is constant along trajectories. It follows that the trajectories
are the concentric ellipses H(q, p) = E, for constant E > 0.

Consider the map 7 : R? — R? defined by 7(q,p) = (¢,—p). Evidently,
7o T = 1, the identity map. A simple calculation establishes the following re-
sult.

Lemma 1.1 If (q(z),p(1)) is a solution of the differential equations (1.1),
then so is T(q(—t),p(—1)). O

This lemma is usually expressed as saying that 7 is a time-reversal symmetry
of the system.

T
|

-
q
.—4———/
]
Figure 1.1 Time-reversal symmetry of the harmonic oscillator

Let — (g(t),p(t)) represent the solution of (1.1) subject to the initial con-
ditions (¢(0), p(0)) = (qo, po), where (go,po) is some pair in R?. We define
¢ : R? — R? to be the time-one step of the system, given by ¢(qo,po) =
(g(1),p(1)). Then

¢otToporT=1,
or

Topor=¢"", (1.2)
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the inverse map of ¢ (see Figure 1.1).

1.1.2 The n-body problem

The above behaviour is not particular to the harmonic oscillator. We can make
similar observations whenever the Hamiltonian H(g, p) of a dynamical system
is quadratic in the momentum variable p.

i
o Y%

e

Figure 1.2 The n-body problem
Consider, for instance, the problem of n point bodies moving under their mu-
tual gravitational attraction, illustrated in Figure 1.2. If we denote the masses

by m; and the positions by x; : R — R? (i = 1,...,n), then in Newtonian form
the equations of motion are

d (mAdx,) i Gmim, [ x,—x;
dt \'" dt ! e — e P — i
l '

where G is the gravitational constant. Let x; = (x;1,x2,x;3) fori=1,..., n and,
for j =1,2,3, let

dx;;
H3i-34; =M, q3i-3+j = Xij, P3i-3+j=Mi—— r
We also define
3n n
p Gm,m
K(P)*Z =, V(q) =——Z —
rs= 1!’\"_’\'5I
r#s

H(gq,p)=K(p)+V(q),
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where p = (pi1,-..,p3n) and g = (g1,---,g3,). Then the equations of motion
become

dqgp  0H

dr  opy

dpr  JH

& g

for k = 1,...,3n. We have, as before, that H(q,—p) = H(q, p), and that if
(q(t),p(r)) is a solution, then so is (g(—t), —p(—t)).

This system has singularities when n > 1, some corresponding to collisions,
and, for n > 4, some corresponding to other singularities [248]. Let us consider
not the full phase space R x R*", but the subset X obtained by removing all
orbits that end in a singularity, and all orbits that when run backwards end in
a singularity. (By running an orbit (¢(z), p(t)) backwards, we mean taking the
orbit (g(—t),—p(—t)).) We remark that X is nonempty, but its structure is not
fully understood to date [84].

Again, we can define 7(q,p) = (¢,—p) and ¢ : X — X to be the time-one
step of the system, so that (1.2) holds.

1.1.3 Billiards

Consider billiards on an arbitrary smoothly-bounded, strictly-convex table with-
out pockets. Let I" denote the boundary. We ignore the motion in which the ball

Figure 1.3 Trajectory of a billiard ball

rolls around the cushion, considering only trajectories in which it bounces to
and fro. We assume that it moves in a straight line between bounces, and that at
each bounce the line of incidence and the line of departure make equal angles
with the normal to the boundary at the point of impact.



