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PREFACE TO THE PAPERBACK EDITION

This book was written eleven years ago. Eleven years is a long time in science,
especially in an explosively developing research area. Importantly, not only has
the science of networks rapidly progressed, but also many objects of its study,
real-world complex networks, have evolved remarkably. Furthermore, new giant
social networking services emerged, including Facebook, Twitter, and Instagram,
which influence modern society in many ways. In Section 3.2 we indicated that in
October 1999, from the point of view of Altavista, the Web consisted of 271 x 106
pages. Nine years later, on 25 July 2008, the official Google blog announced that
the Google index ‘hit a milestone: 1 trillion (as in 1 000000 000 000) unique URLSs
(Uniform Resource Locator) on the web at once!’! In February 2013 Google an-
nounced that it processed 10! search requests per month, that is about 1 search
request per day per human being, and that the size of the Web already exceeded
3 x 10'3 pages.? The number of neurons in a human brain is much smaller than
that, namely of the order of 10''. Progress in information technologies is enor-
mous. The index of Google, keeping track of the WWW, is already over 100
million gigabytes. This big data provides infinite, unseen possibilities. Surpris-
ingly, the Everest of empirical data on a huge variety of networks collected and
analysed during these eleven years, new powerful methods, and emerged research
directions have not changed the basic principles and approaches described in this
book. We understand networks better now, but this deeper understanding is still
essentially based on the ideas developed before 2003. As for comprehensive dis-
cussion of discoveries based on new empirical data, the readers will find it in the
reference books and texts on complex networks published after 2003 (Barrat et
al. 2008, Caldarelli 2007, Cohen and Havlin 2010, Dorogovtsev 2010, Newman
2010, Palsson 2006, Pastor-Satorras and Vespignani 2004), and in the detailed
reviews (Boccaletti et al. 2006, Dorogovtsev et al. 2008, Newman 2003).

Without introducing major content updates, here we briefly outline several
trends and research directions developed after 2003.

Weighted networks. In these extensively explored networks edges differ from
each other. The edges are made individual by ascribing a positive number—a
weight—to each of them. The weighted networks enable researchers to quanti-
tatively represent processes and flows in numerous real-world networks. In par-
ticular, the weight of an edge in transportation networks is naturally defined as
traffic through this edge (Barrat et al. 2004).

Motifs in complex networks. The motifs are subgraphs that are present in
many copies in a network. They play the role of ‘building blocks’ of complex

1See http://googleblog.blogspot.com /2008/07 /we-knew-web-was-big.html.

2How search works: From algorithms to answers, http://www.google.com/insidesearch/
howsearchworks/.
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networks. Many efforts were made to relate specific motifs and some functions
of networks (Milo et al. 2002). Newman (2009) proposed a useful generalization of
the standard configuration model of uncorrelated networks, which incorporated
motifs. This generalization is actually a random graph with a given sequence of
motifs attached to its vertices. In the infinite size limit, this network has no finite
loops apart from those within the motifs used in this construction.

Communities in complex networks. Increasing research activity on communi-
ties in networks (Fortunato 2010, Newman and Girvan 2004) was determined by
numerous perspective applications of these studies to information technologies.
The problem is how to efficiently detect poorly distinguishable and overlapping
communities in large networks. Most efficient algorithms exploited the spec-
tral properties of networks, particularly the structure of eigenvectors (Newman
2006).

k-cores in networks. The k-core of a network is its largest subgraph whose
vertices have at least k connections (within this subgraph). In general, there is a
set of successively enclosed k-cores in a network, similarly to a Russian nesting
doll—*‘matrioshka’. The resulting onion-like structure (the system of so-called
k-shells) was widely used for characterization of the position of individual ver-
tices within a network (Carmi et al. 2007). The birth of a k-core is a discontinuous
transition, remarkably combining the discontinuity and a critical power-law sin-
gularity (Dorogovtsev et al. 2006) These specific hybrid transitions, which are
related to the limiting metastable states of a first-order phase transition, have
attracted much attention in recent years.

Interdependent and multiplex networks. Many real-world systems are not sin-
gle networks but rather networks of networks. The significance of these specific
networks was realized only recently. In particular, in the interdependent net-
works, vertices in each network mutually depend on vertices in other networks,
so that removal of a fraction of vertices from one of these networks leads to a
cascade of back-and-forth damage propagation (Buldyrev et al. 2010). This cas-
cade may completely or partially destroy the networks depending on the fraction
of initially removed vertices and on the structure of the network. The transition
between these two regimes is hybrid, similarly to k-cores. Often the interdepen-
dent networks can be reduced to multiplex networks. These have vertices of one
type and several different types of edges. In other words, the multiplex networks
are graphs with coloured edges. The giant cluster remaining after the cascade
of failures has the following property: for every kind of edge and for every two
vertices in this cluster, there is an interconnecting path following only edges of
this kind within the cluster, which gives a natural generalization of the notion
of a connected component.

Evolutionary games on networks. Another issue of great interest is the evo-
lution of individual strategies (cooperation or defection) of the set of players
placed on the vertices of a complex network (Szabé and Fath 2007). In standard
evolutionary two-player matrix game models, an individual plays with its neigh-
bours and modifies his or her strategy comparing the resulting pay-off with those
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of other vertices. The complex structure of a network may change crucially the
temporal evolution of this game.

Epidemics in networks. Apart from numerous refined epidemic models
(including metapopulation models), many efforts were aimed at a better un-
derstanding of the basic SIS epidemic model. The original conclusions of Pastor-
Satorras and Vespignani (2000), which we describe in Section 6.9, were based on
the so-called heterogeneous mean-field approximation. In this approximation, a
network is actually substituted by a fully connected graph with weighted edges
(annealed network approximation). One can show that diseases survive longer
around hubs in a network, which may result in localized islands of a disease below
the original epidemic threshold (Goltsev et al. 2012). On the other hand, the SIS
model has a final absorbing state in which all the vertices are susceptible. This
forces these localized states, which contain a finite number of infective vertices,
to decay with time (Lee et al. 2013). Note, however, that if highly-connected ver-
tices are sufficiently close to each other, these islands of disease overlap, which
leads to a finite fraction of infective vertices and, surprisingly, to a vanishing
epidemic threshold in infinite uncorrelated networks with degree distributions
decaying slower than an exponential function (Bogund et al. 2013).

Synchronization in networks. Numerous studies were devoted to synchroniza-
tion in complex networks (Arenas et al. 2008). Synchronization transitions differ
strongly from phase transitions considered in this book. Specifically, a sharp
synchronization may take place in finite systems, even in a set of two coupled
oscillators. The major issue was the synchronizability of networks with different
architectures.

Optimization driven evolution of networks. The optimality of network design
can be regarded as a driving force of network evolution. Despite many efforts,
only very simplified optimization based network models were explored. Nonethe-
less, Papadopoulos et al. (2012) found that even a simple model taking into
account competition between popularity and similarity in growing networks re-
produces surprisingly well the architectures of many real-world networks.

Random walks on networks. After the work of Brin and Page (1998) on the
Google PageRank, various problems for random walks and diffusion processes on
networks became a topical issue for complex networks. The results of Noh and
Rieger (2004) show that the presence of hubs in networks may play a key role in
the random walk process. Random walks on evolving networks are particularly
interesting (Perra et al. 2012). If a network evolves much slower than the ran-
dom walker moves from vertex to vertex, then the problem is readily reduced
to random walks on a static network. The opposite case of a rapidly evolving
network and the extremely slow random walker is equivalent to random walks on
an annealed network. On the other hand, the non-trivial intermediate situation,
in which the time scale of the network reconstruction coincides with hopping
times in the random walk process, demands special consideration.

Controllability of networks. Liu et al. (2011) applied control theory to the
system of coupled linear equations describing the dynamics of states of vertices
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of directed complex networks. The question was: how many driver nodes can
control the dynamics of the entire network? It turned out that homogeneous
networks can be easily controlled, while scale-free networks are the most difficult
to control.

In his book ‘Linked: The New Science of Networks’ (2002), Lészlé Barabdsi
appealed ‘Think networks!” After eleven years, we already observe the common
perception of an individuum as a node of a complex system of interconnected
evolving networks. We believe that this perception and interpretation of our
world in terms of complex networks will be among key factors contributing to
the future development of humankind.

Awveiro S.N.D.
June 2013 J.F.F.M.
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PREFACE

This book is about the growth and structure of random networks. The book
is written by physicists and presents the point of view of a physicist, but is
addressed to all researchers involved in this subject and students.

Where was physics 50 years ago, and where is it now? At first sight, the
role of physics is decreasing; other natural sciences are developing more rapidly.
However, physics has penetrated into all sciences. A natural step for a physicist
is to jump from the traditional topics of physics to new intriguing problems.
Actually, our book describes a flight from physics to the new interdisciplinary
field of networks. This escape is, however, still dependent on physics.

For many years the term ‘random graphs’ usually meant to mathematicians
static, ‘equilibrium’ networks with a Poisson-type distribution of connections.
Mathematicians have made truly great advances in the description of such net-
works.

Only recently have we realized that we reside in a world of networks. The
Internet and World Wide Web (WWW) are changing our lives. Our physical
existence is based on various biological networks. The extent of the development
of communications networks is a good indicator of the level of development in a
country. ‘Network’ turns out to be a central notion in our time, and the explosion
of interest in networks is already a social and cultural phenomenon.

Graph theory has made great progress. However, the most important natural
and artificial networks have a specific architecture based on a fat-tailed distri-
bution of the number of connections of vertices that differs crucially from the
‘classical random graphs’ studied by mathematicians. As a rule, these networks
are not static but evolving objects. Their state is far from equilibrium and their
structure cannot be understood without insight into the principles of their evo-
lution. Only in the last few years have physicists started extensive empirical and
theoretical research into networks organized in such a way. Earlier, physicists’
interest was rather in neural and Boolean networks where the arrangement of
connections was secondary.

We think that the physics approach is the most advantageous for understand-
ing the evolution of networks. Actually, what we physicists are now doing on this
active topic is a direct generalization of the usual physics of growth, percolation
phenomena, diffusion, self-organized criticality, mesoscopic systems, etc.

Our aim is to understand networks: that is, to understand the basic principles
of their structural organization and evolution. We believe that this understanding
is necessary to find the best solutions to the problems of real networks.

We decided to present a concise informative book which could be used even
by students without a deep knowledge of mathematics and statistical physics
and which would be a good source of reference material. Therefore we have tried

xi
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to introduce the main ideas and concepts in as simple a manner as possible, with
minimal mathematics. Special attention is given to real networks, both natural
and artificial. We discuss in detail the collected empirical data and numerous
real applications of existing theories. The urgent problems of communication
networks are highlighted and discussed.

For a description of network evolution, we prefer to use a simpler continuum
approach. We feel that it is more important to be understood than to be per-
fectly rigorous. Also, we follow the hierarchy of values in Western science: an
experiment and empirical data are more valuable than an estimate; an estimate
is more valuable than an approximate calculation; an approximate calculation
is more valuable than a rigorous result. More cumbersome calculations and sup-
plementary materials are placed in appendices. We hope that all of the results
and statements that we discuss can be easily found in the text and understood
without undertaking detailed calculations. Therefore, we ask our brave readers
to skim over difficult pages without hesitation and not to pay any attention to
footnotes. However, as this is a monograph written by theoretical physicists, we
try to keep a ‘physical level’ of strictness in our explanations and definitions.
Although, we try to avoid superfluous words, we are not afraid to repeat impor-
tant statements at a different level. We hope that the book will also be useful to
mathematicians, as a source of interesting new objects and ideas.

We thank our friends and colleagues for their help. Foremost among these are
our collaborators in this field: Alexander V. Goltsev and Alexander N. Samukhin
from the Ioffe Institute in St Petersburg. We did not reprint figures with em-
pirical data from original papers but made sketches of data. We are grateful to
Albert-Lészlé Barabasi, Stefan Bornholdt, Jonathan Doye, Jennifer Dunne, Lee
Giles, Ramesh Govindan, Byungnam Kahng, Ravi Kumar, Neo Martinez, Sergei
Maslov, Mark Newman, Sidney Redner, Ricard Solé, Alessandro Vespignani, and
their coauthors for permission to use data from their original figures for deriva-
tive reproduction. We are much indebted to John Bulger, Ester Richards, Chris
Fowler, David Duckitt, Goutam Tripathy, and Neville Hankins, the copy editor
at Oxford University Press for correcting the English of our book. Our com-
puters did not crash only thanks to Miguel Dias Costa and Joao Viana Lopes.
When this book was written, one of us (SND) was on leave from his native Ioffe
Institute, and he acknowledges the Centre of Physics of Porto for their support
and hospitality.

Porto S.N.D.
May 2002 J.F.F.M.
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0

MODERN ARCHITECTURE OF RANDOM GRAPHS

The first natural questions to ask about a network are:

e What does it look like?

What is its structure and its topology?
Is it large or small?

Why does it have the features it has?
How did it emerge and develop?

e What can we do with it?

In fact, this book is devoted to a discussion of just these issues. Note that we
are not very interested in the internal states of the vertices or edges of networks
which are of primary importance in neural and Boolean nets. We restrict our-
selves to problems related to the topological structure of random networks, to
the evolution of this structure, and to the direct consequences of the particular
structural organization of nets.

For many years, the structure of networks with random connections was an
object of immense interest for researchers in various sciences, namely mathe-
matics (graph theory), computer science, communications, biology, sociology,
economics, etc. Physics may be practically omitted from this incomplete list if
we forget neural networks. These sciences provided separate views of distinct
networks. A general insight was absent.

In the late 1990s the study of the evolution and structure of networks became
a new field of physics. Now we can speak about the statistical physics of networks.
What happened?

Here we must explain the strange sounding title of this introduction. How can
graphs be modern or traditional? The point is that a few years ago the common
interest moved from graphs with a rapidly decreasing distribution of connections
(a Poisson degree distribution) to those with a fat-tailed degree distribution; that
is, those with many highly connected vertices. The difference between these two
architectures is so striking that the transition to the study of the latter actually
leads to a revolution in network science.

This transition has been induced by empirical observations of power-law
distributions of connections in many real networks, above all, the WWW (Al-
bert, Jeong, and Barabasi 1999, Huberman and Adamic 1999) and the Inter-
net (Faloutsos, Faloutsos, and Faloutsos 1999, Govindan and Tangmunarunkit
2000). Mathematical graph theory turned out to be rather a long way from real
needs since it focused mainly on ‘too simple’ static random graphs with Poisson
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distributions of connections (Erdés and Rényi 1959, 1960), where hubs are not
essential. In these random graphs of graph theory, edges are distributed at ran-
dom between a fixed number of vertices. In our book, we call such simple nets
classical random graphs. Moreover, mathematicians did not really study evolving
random networks.

By the middle of the 1990s, the impact of large, growing communications
nets with complex architectures, the Internet and the WWW, on our civiliza-
tion became incredible. However, understanding of their global organization and
functioning was absent.

On the other hand, knowledge of the principles of the evolution and struc-
turation of networks was of vital practical importance. For example, the effective
working of search engines is hardly possible without this knowledge. We should
note that the first concepts of functioning and practical organization of large
communication networks were elaborated by one of the ‘parents’ of the Internet,
Paul Baran (1964). Actually, many present studies develop his initial outstand-
ing ideas and use his terminology. What is the optimal design of communication
networks? How can one afford their stability and safety? These and many other
vital problems were first studied by Baran at a practical level.

Communication networks are well documented. The data on their structure
can be obtained using special programs—robots. The most difficult aspect of
these empirical studies is that really very large nets are necessary for good
statistics. Indeed, the results of such observations are usually various statisti-
cal distributions. Finite-size effects cut off their tails and narrow the field of
observation. One should note that a number of effects in networks cannot be
explained without accounting for their finite sizes. In this sense, most real net-
works are mesoscopic objects. However, for the observation of the fat tails of
degree distributions, these finite sizes are only a complicating factor.

Several years ago large artificial nets had approached sizes that allowed statis-
tically reliable data to be obtained. At present, the largest of them, the WWW,
contains about 10° vertices (the documents of the WWW, that is pages) con-
nected by about 10'? edges (hyperlinks). The first empirical study of the WWW
(Albert, Jeong, and Barabdsi 1999) showed that (1) it is a surprisingly com-
pact network: the average length of the shortest directed path between two of
its randomly chosen pages is only about 19 steps (‘clicks’), that is of the order
of the logarithm of the WWW size and (2) the distribution of the numbers of
connections of its vertices has an unusual fat-tailed form.

At present, the first result seems quite obvious. Indeed, this value of the av-
erage shortest-path length is typical of networks with random connections. This
smallness of the average shortest-path length is usually referred to as the small-
world effect. Even the introduction of a single shortcut between widely separated
sites in a finite lattice essentially reduces the average shortest-path length. A low
concentration of shortcuts between randomly chosen lattice sites produces the
shortest-path lengths typical of classical random graphs (Watts and Strogatz
1998). In random networks where all edges are actually such shortcuts, the av-



