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This book is devoted to some mathematical methods that arise in two do-
mains of artificial intelligence: neural networks and qualitative physics.
The rapid advances in these two areas have left unanswered several
mathematical questions that should motivate and challenge mathemati-
cians.

Professor Aubin makes use of control and viability theory in neural
networks and cognitive systems, regarded as dynamical systems con-
trolled by synaptic matrices, and set-valued analysis that plays a natural
and crucial role in qualitative analysis and simulation. This allows many
examples of neural networks to be presented in a unified way. In addi-
tion, several results on the control of linear and nonlinear systems are
used to obtain a “learning algorithm” of pattern classification problems,
such as the back-propagation formula, as well as learning algorithms of
feedback regulation laws of solutions to control systems subject to state
constraints.

Mathematical models involve many features of a problem that may not
be relevant to its solution. Qualitative physics, however, deals with an
imperfect knowledge of the problem model. It is therefore more suited
to the study of expert systems, which are shallow models and do not
require structural knowledge of the problem.

This book should be a valuable introduction to the field for researchers
in neural networks and cognitive systems, and should help to expand the
range of study for viability theorists.
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Preface

This book is devoted to some mathematical methods that arise in
two domains of artificial intelligence: neural networks and qualitative
physics (which here we shall call “qualitative analysis”). These two
topics are treated independently. Rapid advances in these two areas have
left unanswered many mathematical questions that should motivate and
challenge a wide range of mathematicians. The mathematical techniques
that I choose to present in this book are as follows:

control and viability theory in neural networks and cognitive systems,
regarded as dynamical systems controlled by synaptic matrices.

set-valued analysis, which plays a natural and crucial role in qualitative
analysis and simulation by emphasizing properties common to a
class of problems, data, and solutions. Set-valued analysis also
underlies mathematical morphology,* which provides useful tech-
niques for image recognition.

This allows us to present in a unified way many examples of neural
networks and to use several results on the control of linear and nonlinear
systems to obtain a learning algorithm of pattern-classification problems
(including time series in forecasting), such as the back-propagation for-
mula, in addition to learning algorithms concerning feedback-regulation
laws for solutions to control systems subject to state constraints (inverse
dynamics).

These mathematical techniques may also serve to contribute to the
various attempts to devise mathematical metaphors for cognitive pro-

1See the forthcoming book by Michel Schmitt and Luc Vincent, Morphological

Image Analysis (Cambridge University Press). The links between mathematical

morphology and set-valued analysis and viability theory will be explored in a sub-

sequent book, Mutational and Morphological Analysis: tools for shape regulation
and optimization.

xi



xii Preface

cesses. I present here a very speculative metaphor under the name of
cognitive systems based on these mathematical techniques. They go
beyond neural networks in the sense that they involve the problem of
adaptation to viability constraints. They can recognize the state of the
environment and act on the environment to adapt to given viability con-
straints. Instead of encoding knowledge in synaptic matrices as neural
networks do, the knowledge is stored in conceptual controls. Given the
mechanism of recognition of the state of the environment by conceptual
controls, perception and action laws, and viability constraints, the via-
bility theorems allow one to construct learning rules that describe how
conceptual controls evolve in terms of sensorimotor states to adapt to
viability constraints.

There is always a combination of two basic motivations for dealing
with formal models of cognition - neural networks being content with
implementation of “neural-like” systems on computers, and cognitive
systems attempting to model actual biological nervous systems. Every
model lies between these two requirements - the first allowing more free-
dom in the choice of a particular representation (computing efficiency
being the main criterion), and the second constraining the modeling to
be closer to biological reality.?

The symbolic processing capabilities that neural networks try to
achieve are unexpected technological consequences of the use of dig-
ital computers, which were not designed for such a purpose at their
inception. In the same way, the skills of reasoning logically and solving
mathematical problems also represent a kind of unexpected “technolog-
ical fallout” of the human brain, because they certainly were not among
the advantages necessary for the survival of the human species when
they appeared.

FEzpert systems are shallow models that do not require any formal and
structural knowledge of the problem, whereas a mathematical model
might involve too many features that would not be relevant for solv-
ing the problem at hand. For many problems, we have only imperfect
knowledge of the model, and we may be interested in only a few features
(often of a qualitative nature) of the solution, and so we see at once that
the concept of partial knowledge involves two types of ideas:

2 Actually, we should say “degree of reality for a social group at a given time,” which
is understood here in terms of the consensus interpretations of the group members’
perceptions of their physical, biological, social, and cultural environments. This
concept of reality is thus relative to a social group and is subject to evolution.
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1. We require less precision in the results (e.g., signs of the components
of vectors instead of their numerical values),
2. We take into account a broader universality or robustness of these

results with respect to uncertainty, disturbances, and lack of preci-
sion.

As in numerical analysis, which deals both with approximation of prob-
lems in infinite-dimensional spaces by problems in finite-dimensional
spaces and with the algorithms for solving such approximated prob-
lems, the problems of qualitative analysis arise at two levels: the pas-
sage from quantitative analysis to qualitative analysis (which deals with
the association of discrete problems with continuous problems) and the
algorithms to solve discrete problems.® In particular, Kuipers’s QSIM
algorithm for tracking the monotonicity properties of solutions to dif-
ferential equations is revisited by placing it in a rigorous mathematical
framework. This allows us to determine a priori the landmarks (i.e.,
the states at which the monotonicity properties change) instead of dis-
covering them a posteriori by tracking the qualitative evolution of the
solutions to the differential equation. These landmarks delineate qual-
itative cells, in which the monotonicity behaviors of the solutions are
the same. Once these qualitative cells are computed, the Dordan QSIM
algorithm provides the transition laws from one qualitative cell to the
others.

This book is divided into 10 chapters. Chapters 1-7 deal with neu-
ral networks and some mathematical background needed to treat them
(pseudoinverses, tensor products, gradient methods for convex poten-
tials), Chapter 8 deals with cognitive systems, and Chapters 9 and 10
deal with some mathematical questions raised by qualitative physics, in
the static and dymanic cases, respectively.

Chapter 1 provides the definitions of neural networks and learning
processes (including the perceptron algorithm) and the heavy learning
algorithm, which allows learning without forgetting.

Chapter 2 deals with some mathematical tools: pseudoinverses of lin-
ear operators and tensor products. Indeed, we have to use the specific
structure of the space of synaptic matrices as a tensor product to justify
mathematically the connectionist features of neural networks. Tensor
products ezplain the Hebbian nature of many learning algorithms. This
is due to the fact that derivatives of a wide class of nonlinear maps de-

3The first aspect has been quite neglected, and it is the one we shall emphasize in
this book.
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fined on spaces of synaptic matrices are tensor products and also to the
fact that the pseudoinverse of a tensor product of linear operators is the
tensor product of their pseudoinverses.

Chapter 3 is devoted to the case of linear neural networks, also called
associative memories. We begin by showing that the heavy learning
algorithm for neural networks that are affine with respect to the synap-
tic matrices (but nonlinear with respect to the signals) has a Hebbian
character. We proceed with purely linear networks with a single layer or
with a finite number or a continuum of layers. The chapter ends with an
introduction to associative memories with gates, which are well adapted
to compute Boolean and fuzzy Boolean functions.

Chapter 4 is devoted to the proof of the convergence of the gradient
method for minimization problems involving a convex criterion with or
without constraints. We discuss an application to the Minover algorithm
of Mézard that replaces the perceptron algorithm. Many more features
of convex analysis could be used in the study of a class of neural net-
works, but such results would go beyond the scope of this book and the
common knowledge of its expected audience.

Chapter 5 adapts these results to the case of nonlinear networks and
presents two main types of learning rules. The first class consists of
algorithms derived from the gradient method and includes in particular
the back-propagation rule. The second class is composed of learning
rules based on the Newton method.

Chapter 6 is devoted to the use of neural networks for finding viable
solutions to control systems, that is, solutions to control systems that
will satisfy given viability (or state) constraints. The purpose of this
chapter is to derive learning processes for regulation feedback for control
problems through neural networks. Two classes of learning rules are
presented. The first, called the class of external learning rules, is based
on the gradient method (of optimization problems involving nonsmooth
functions). The second deals with uniform algorithms.

In Chapter 7, the internal-learning algorithm provides learning rules
based on viability theory. Two sections are devoted to a short pre-
sentation of the main results of viability theory and its application to
the regulation of viable solutions to control systems. Applications to
the control of cart-pole problems and other benchmark problems have
been designed by N. Seube. This algorithm is applied to stabilization
problems.

Chapter 8 goes beyond neural networks as they are usually defined.
It proposes a very speculative mathematical model of what is called a
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cognitive system. A cognitive system is a dynamical system describing
the evolution of sensorimotor states, recognized and controlled by con-
ceptual controls, according to perception and action laws, and required
to obey some viability constraints. Adaptive learning processes asso-
ciating conceptual controls with sensorimotor states are then obtained
by using viability theorems, including the ones that obey the inertia
principle: Change the conceptual controls only when the viability of the
cognitive system is at stake. This chapter is oriented toward mathemat-
ical metaphors motivated by cognisciences, of which we present a few
relevant facts.

Chapter 9 treats the qualitative resolution of static problems described
in the form of both equations and inclusions. It proposes a general frame-
work (confluence frames) to link quantitative problems with qualitative
ones. In particular, sign confluences are thoroughly investigated.

Chapter 10 is devoted to qualitative simulation of differential equa-
tions and to a mathematical treatment of Kuipers’s QSIM algorithm to
track the monotonicity properties of solutions to differential equations.
We also consider Dordan’s QSIM algorithm, which provides the quali-
tative cells delineated by the landmarks, and then the transition map
associating with each qualitative cell its successor(s). Dordan’s QSIM
algorithm was designed to study the qualitative behaviors of a class of
differential systems, the replicator systems, which play important roles
in several domains of biology and biochemistry. We consider several
examples obtained by using software designed by O. Dordan.

Two appendixes conclude this book. Appendix A provides a survey
of convex optimization and set-valued analysis that goes beyond the
minimal survey of Chapter 4. Appendix B describes applications of
Nicolas Seube’s algorithms, presented in Chapters 6 and 7, to the control
of autonomous underwater vehicles (AUVs) tracking the trajectory of an
exosystem.
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1
Neural Networks: A Control Approach

Introduction

A neural network is a network of subunits, called “formal neurons,”
processing input signals to output signals, which are coupled through
“synapses.” The synapses are the nodes of this particular kind of net-
work, the “strength” of which, called the synaptic weight, codes the
“knowledge” of the network and controls the processing of the signals.

Let us be clear at the outset that the resemblance of a formal neuron to
an animal-brain neuron is not well established, but that is not essential
at this stage of abstraction. However, this terminology can be justified
to some extent, and it is by now widely accepted, as discussed later.
Chapter 8 develops this issue.

Also, there is always a combination of two basic motivations for deal-
ing with neural networks - one attempting to model actual biological ner-
vous systems, the other being content with implementation of neural-like
systems on computers. Every model lies between these two requirements
- the first constraining the modeling, the second allowing more freedom
in the choice of a particular representation.

There are so many different versions of neural networks that it is
difficult to find a common framework to unify all of them at a rather
concrete level. But one can regard neural networks as dynamical systems
(discrete or continuous), the states of which are the signals, and the
controls of which are the synaptic weights, which regulate the flux of
transmitters from one neuron to another. They yield what are also
known as adaptive systems, controlled by synaptic matrices.

We investigate in this chapter the supervised learning of a finite set
of patterns, called the training set, each pattern being a pair of input-
output signals. A learning process amounts to matching the given input
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signals of the patterns of this training set with the associated output
signals. It thus involves a comparison with desired answers, done by a
“supervisor.” Hence, the learning problem amounts to finding a synaptic
matrix that can “learn” the patterns of a given training set. Any algo-
rithm yielding such a synaptic matrix will then be regarded as a learning
rule. This seems to exclude neural networks from reasonable models of
basic neural functions. However, the problems under investigation here
are as follows:

1. Establish the existence of exact (or approximate) synaptic matrices
that have learned a given set of patterns,

2. Find algorithms, regarded as learning rules, that will provide a se-
quence of synaptic matrices converging to a solution of the learning
problem.

I propose in this first chapter a short presentation of the learning
processes of neural networks in the framework of dynamical systems
controlled by synaptic matrices. Section 1.2 explains how neural net-
works operate to solve pattern-classification problems and, in particular,
to extrapolate time series in forecasting problems. These problems are
called supervised learning problems, because the patterns to be taught
are provided by a supervisor, so to speak.

Biological Comments. Although the results to be derived here will
be “formal” and will not necessarily be associated with any biological
implementation, it may be useful to provide a crude description of the
nature of the processing carried out by some biological neurons (Figure
1.1).

It should be first pointed out that many kinds of neuronal cells evolved
during phylogenesis, each of them selected to provide adequate technical
solutions to biological or environmental problems. Most neurons in the
central nervous system in higher animals can be regarded as impulse
oscillators. They produce trains or volleys of neural impulses whose
average frequency will depend on the input excitation. The processing
carried out by neuron ensues from biophysical and biochemical phenom-
ena in the membrane of the neuron, wherein functions the machinery
that controls the interaction of the cell and its environment.

Models of neural dynamics that attempt to describe the triggering
phenomena, the transmission of the impulses, and their biochemical con-
trol have been extensively studied since the Hodgkin-Huxley model was
first proposed. The central features are the following: There is a static
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Fig. 1.1. Neurons. Pyramidal and Purkinje neurons

electrical-potential difference of about 70 mV between the inside of the
neuron (negatively charged) and its environment; it is maintained by
diffusion of ions through the membrane. The synaptic receptors are
able to control the ionic conductance of the membrane through a highly
sophisticated biochemical and ionical mechanism (Figure 1.2).

When neurotransmitters (excitation signals) arrive at a receptor, the
excitatory synapses tend to produce a depolarization of the membrane,
and the inhibitory synapses tend to produce a hyperpolarization. When
the sum (i.e., algebraic sum) of the depolarizations exceeds a given
threshhold, then the membrane’s permeability to ions is increased, and
the membrane becomes electrically active, sending an output impulse
of about 100 mV amplitude during a period of 0.5-2 ms. After each
impulse, there is a short refractory period during which the membrane
recovers so as to be ready for the next impulse (Figure 1.3).

Because in our framework we are interested in the collective processing
by neurons, we shall be content with only a crude analytical description
of the processing role of the neuron. We retain only the following fea-
tures: The impulse frequency oscillates between bounds determined by
physical and chemical factors (oscillating between 0 and 500 Hz). Be-
tween those bounds, the postsynaptic average oscillatory frequency is
assumed to be a monotonic function of the net algebraic sum of the
presynaptic average frequencies of the inputs afferent to the neurons
(inhibitory excitations being regarded as negative excitations). Even
though, for simplicity, the integration of the presynaptic inputs is often



