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Preface

The study of Weakly Asymptotically Diagonal systems originated in an
attempt to analyse the convergence of expansion methods for differential
and integral equations of “global” type; that is, methods which employ
expansions of the form
N
fx) = 2, afhx),

where the hi(x) have global rather than local support and are typically
chosen to be orthogonal polynomials in an appropriate set of variables.
For a linear problem, such methods lead to a set of linear equations for
the coefficients @™, i=1,...,N, and it is possible to treat both the
convergence and the stability properties of the method by analysing the
structure of the matrix and right-hand side of these equations. Such an
approach has the advantage that these properties are then characterised
directly in terms of quantities which are available without additional cost
during the course of the calculations: the error estimates which result are
cheap to compute.

For the analysis to be of general use, it is necessary to abstract the
essential structure of the equations, and to analyse the class of matrices
having this structure. The definition of a Weakly Asymptotically Diagonal
(WAD) matrix -arises directly from this necessity. Historically, two sub-
classes of WAD matrices were introduced first: matrices of type A, which
closely model the equations that arise from Fredholm integral equations,
and type B, which model differential equations.

These subclasses yield a rather straightforward analysis of the conver-
gence and stability properties of global expansion methods for one-dimen-
sional problems, together with cheaply computable and very effective error
estimates for such methods. Systems of type A in particular yield a rather
simple theory, which is discussed in detail in Chapter 2.
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The more abstract general WAD definitions arise from a natural wish
to broaden the class of problems covered by the analysis as much as
possible, and to formalise the essential results contained in the rather
specific theorems of type A and type B systems. It appears that this can
be achieved in quite a natural manner, and a considerable body of analysis
has grown up for WAD matrices. Although it is by no means complete,
it seems worthwhile to bring together the available results together with
some of their applications to expansion methods; the result is this book,
which splits naturally into three sections.

The theory and numerical analysis of WAD systems is discussed in
Chapters 1-8; we hope that the ordering chosen, and the examples given,
illustrate sufficiently the analysis to motivate this detailed study. The third
section, Chapters 1214, discusses applications of the theory to the solution
of integral and differential equations. Space considerations limit the detail
that can be given in these chapters. However, it is our hope that they, and
also Chapter 8 on the numerical analysis of WAD systems, fornt a practical
justification for Chapters 1-7: namely, that the study of WAD systems,
and the insight which these systems give into the structure of global
expansion methods, has led directly to the development of improved
algorithms and to cheap and effective error estimates for a wide class of
problems. The error estimates depend on the parameters of the WAD
systems, and these parameters can themselves be directly estimated during
the calculations. They can, however, also be related to the analytic proper-
des (the smoothness) of the coefficients in the equation being solved.
Section 2, Chapters 9-11, is devoted to the analysis of the convergence
properties of orthogonal expansions, and discusses this relationship in
detail. These chapters thus form a bridge between the abstract WAD
theory and its applications in Chapters 12-14. They also form a bridge
between the basis—dependent analysis of this book, and the more common
basis—independent analysis of the convergence of variational and Galerkin
methods in which the assumed smoothness properties of the equations
appear directly.

This book contains a number of new and extended results, but its main
purpose is to draw together previously published results. We are grateful
to all of our colleagues who have worked in this field, and particularly to
Drs M. Bain, K. O. Mead and F. A. Musa, for permission to draw upon
their theses and published work, as listed in the references, as well as for
many discussions. Without their collaboration and cooperation, this book
could not have been written. Responsibility for any errors which remain
in it, however, rests with us. We would also like to acknowledge with
gratitude the patience and forbearance of Miss K. Anderson and Mrs G.
M. Eyres, in seeing us through successive drafts.

Liverpool & Manchester

L. M. Delves
March 1981 T. L.

Freeman
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1

Introduction and Motivation

1.1 Introduction

This book is primarily concerned with the analysis of a class of infinite
matrices: the class of Weakly Asymptotically Diagonal (WAD) matrices of
the title. This analysis is interesting in its own right; however, the major
interest lies (for the authors at least) in the application of the theory to prob-
lems ir the general field of approximation theory. WAD matrices arise
naturally when global or global element expansion methods are used to
solve numerically a wide class of problems which involve integral and differ-
ential equations in one or more dimensions; the WAD assumptions were
in fact introduced in order to model the structure of the matrices that arise
from these problems. In this chapter we therefore try to motivate the analysis
of Chapters 2-7 by giving a brief discussion of such methods. We demonstrate
by example their main source of interest: the possibility of obtaining very
rapid convergence; convergence which in “suitable” cases is much more
rapid than that attainable with a conventional finite difference or finite
element approach. However, rapid convergence is of little use in practice
unless it can be recognised: what is needed is a computable error estimate
which reflects the actual error as faithfully as possible while adding as little
as possible to the cost of the calculations. The provision of such error esti-
mates is one of the main achievements of the WAD theory developed here.
The estimates depend on an analysis of the structure of the defining equations
for the expansion method; this structure is displayed in a simple case in the
example of Section 1.5. Once the structure is understood, surprisingly
simple and effective error estimates follow. In addition, the structure suggests
efficient ways of both setting up and of solving the defining equations; see

Chapters 8 and 12-14 for a discussion of the savings which can be made.
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1.2 Galerkin methods for linear operator equations
1.2.1 The Galerkin formalism

Let R be a Hilbert space with inner product (-, *) and #: R — R a linear
operator defined on R (or perhaps a subspace of R). Let g be a known element
of R, and f the solution (assumed to exist and to be unique in R) of the linear
operator equation

=g (12.1)

An expansion method introduces a complete set {h}, i=1, 2,..., of
elements in R,and expansions for the exact solution of (1.2.1) and the truncated
form f,, which approximates it. Thus

f= ibihi (122)
i=1
fn= i aﬁ"’hl.. (12.3)

i=1

The method also provides an algorithm for computing the coefficients a{™
in the approximate solution. Many algorithms can be constructed; we con-
sider here only the unsymmetric Galerkin method or method of moments,
which introduces a second set of elements {h} and computes a™ = (a")
as the solution of the N x N linear system

La® =g (124)

where the matrix L and vector g are defined by
L,=Mh,%h), ij=1,..,N, (125)
g, = (h,g), () [ (1.2.6)

In practice, the sets {h,}, {h,} may be related; for example, we may choose
h, = %h, (method of least squares) or h, = wh, (weighted Galerkin). The
choice h, = h, yields the symmetric Galerkin technique; we shall use the
generic term Galerkin method, the precise choice of A, being evident from
the context.

The use of a Galerkin technique for numerical calculations raises a number
of interesting and interrelated questions:

(i) Posing the problem

How do we pose a given type of problem in the form (1.2.1)? In particular,
for differential equations, this question usually reduces to: How do we treat
the boundary conditions?
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(i) Choosing the expansion set

How do we choose the basis set {h;} in (1.2.2), (1.2.3), and the companion
set {h} in (1.2.5), (1.2.6)? How does this choice affect the accuracy of-the
calculation? The cost of the calculation? The stability against numerical or
round-off errors? The convenience?

(iii) Computing the solution

Setting up the matrix problem (1.2.4) usually involves providing numerical
approximations to the inner products involved; the choice of approximation
can crucially affect both the accuracy obtained and the time taken. For the
large systems which result from multi-dimensional problems, the methods
used to solve (1.2.4) are also important since the solution time can be as
great as or greater than the time taken to form the equations.

(iv) Analysing the errors
Three classes of numerical error can be distinguished in a Galerkin calcula-
tion:

(a) Truncation errors
These stem from the truncation of (1.2.2) after N terms.
(b) Discre*isation errors <
These stem from the differences b, — a{™,i=1,2,..., N.
(c) Quadrature errors
Given that we approximate the inner produicts.involved (using quadra-
ture rules) we in fact solve not (1.2.4) but the perturbed system

L+ 6L)a™ + sa®™y =g +.6g, (12.7)

these perturbations yielding an additional source of error, a™.

1.2.2 An example

We provide a partial answer to questions (i) and (ii) above by means of an
example. Consider the real, linear Fredholm integral equation of the second
kind

b
S = g(x) + lf K(x,y) f(y) dy. (12.8)
Under suitable assumptions (on the kernel 1K, and driving term g), this

equation has a unique solutiont. If we choose an inner product on the

t For example: if g(x) is continuous in [a, b], K(x, y) is continuous in [a,b] x [a,b], and 4
is not a characteristic value of (1.2.8), then there exists a unique continuous solution f(x).
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interval [a, b]:
b
. f) = J F19f; 0 )w(x) dx (1.29)

and set
hix)=hfx), i=12,... (1.2.10)
then (1.2.5), (1.2.6) takes the form

L;= r w(x)h (x)h;(x) dx — 4 f

b

w(x)h(x) f . K, ph ) dydx  (1.2:11)

b
g; = '[ w(x)h(x)g(x) dx. (1.2.12)

Equations (1.2.4), (1.2.11), (1.2.12) are the formal defining equations for the
Galerkin method applied to the problem (1.2.8). The same equations result
if we choose the unweighted inner product

b
(fpfo) = J f1(x)f(x) dx (1.2.12a)
and set ‘
hix) = wix)h(x), i=1,2,.... (1.2.12b;
A numerical method results from these defining equations once we:

(a) specify the basis set {h,};
(b) specify how the integrals are to be performed.

We are not concerned here with (b) (but see Chapter 12). The choice (a)
lies primarily between local and global bases; we can informally describe
these as follows:

Local basis

We split the region a < x < b into intervals of width h. On each subinterval
[a + mh, a + (m + 1)h] the approximate solution f,(x) is taken to be a
polynomial of fixed degree p. Continuity conditions may be imposed across
subinterval boundaries (for example, a spline basis results if f,(x) is con-
strained to have p — 1 continuous derivatives on [a, b]). Convergence is
obtained by letting h — 0 for fixed p.

This description of fy(x) is not in terms of an expansion of the form (1.2.3),
but for any choice of p and of continuity constraints, it can be put in that form.
Forexample,ifp = 1 (piecewise linear approximation)and f,(x) is constrained
to be continuous on [a, b], the description can be rephrased as follows:
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Define the hat function Hat (x):

Hat(x) =0, x<a+(@{i-1h
=x_—w, a+(i—-1h<x<a+ih
=“+“:”h’ﬁ atih<x<a+ G+ Dh
=0, x>a+ i+ 1h

h = (b — a)/N. (1.2.13)

Thus, Hat(x) is zero except on the interval [a + (i — 1)h, a + (i + 1)h] and
is linear over the two halves of this interval, with discontinuous first deriva-
tiveat x = a + ih,and ata + (i — 1)h, a + (i + 1)h. Now choose as basis

h(x) = Hat(x), i=1,..,N. (1.2.14)

Global basis
The local basis described above has the feature that each of the basis functions
Hat (x) depends explicitly on N, and has local support; that is, is zero every-
where except over a small subinterval of [a, b]. A global basis is one in which
the basis functions have support over the whole region; in practice, they are
also chosen to be independent of N. Within these restrictions, many choices
are available. The most common choice is to take f,(x) to be a polynomial
of degree N — 1 in x.

We can clearly achieve this in a number of ways; for example, the choice

h)=x"1 i=1,2.., (12.15)

and

mm=nﬂciiﬁﬂ%,wnzm, (1.2.16)
b—a

where T(z), — 1 < z <1, is a Chebyshev polynomial of degree k, and each
defines a polynomial approximating function f,(x); we show in Section 1.3
that these choices are in fact equivalent in the sense that, if quadrature and
round-off errors are ignored, they will yield the same solution f,(x).

The choice between local and global basis is crucial; the two types lead
to quite different numerical techniques both for setting up and for solving
the Galerkin equations, and to quite different types of error analysis. They
also perform quite differently in practice, as the following example demon-
strates.
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In (1.2.8), we take

AK(x,y) =¥
gx)=e"— (€ = fx + 1) (1.2.17)
a=0, b=1.
Then the exact solution of (1.2.8) is
flx) =" (1.2.18)

Table 1.1 shows the maximum errors, ||f — fy| ., obtained using expan-
sion methods with the expansion sets (1.2.14) and (1.2.16).

Looking first at the results using a local expansion, we remark that the
errors reduce only relatively slowly as N increases. The results given are in
fact well fitted by the form

”f_fN” ~ CN7?, p= 2,

and it is a simple matter to predict this value for the exponent p in advance:
it is related to the continuity of the expansion set {Hat(x)} used, and not at
all to the problem being solved, provided that this is “smooth enough”. It
is more difficult to predict the amplitude C; still, it is certainly an advantage
of local methods that the behaviour of the error can be predicted, and hence
checked.

Looking next at the global expansion results, we see that very rapid con-
vergence is obtained; for this problem, there is no doubt that the global
method is preferable. This rapid convergence is typical of that achieved
with a global polynomial basis for problems which have “smooth” solutions.
Of course, not all problems are of this type. When the solution is “non-
smooth”, a global basis may converge no faster than a local basis, and may
well be more expensive overall. Further, techniques exist for improving the
performance of both types of expansion. For example, extrapolation pro-
cedures such as the “deferred approach to the limit” may be applied to
increase the convergence rate of a local calculation, while we may choose
to subdivide the region [a, b] into two or more subintervals and apply a
global expansion over each subinterval, to improve the performance of a
global method. It is not the purpose of this book to argue for or against
the use of global as opposed to.local bases. Instead, we note the interestingly
fast convergence which can be achieved, and ask the question: can this error
be predicted in practice for a global method, as it can for a local method?
In particular, we would like to provide error estimates for a global expansion
method which are cheaply computable and realistic. It transpires that such
an analysis of some generality can be given, provided that we limit attention
to orthogonal bases as typified by (1.2.16); fortunately, the use of such bases,



