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Foreword

Complex systems exist in every microscopic corner and every macroscopic plane of the
physical world in which we inhabit. Whether it be the transformation of work-energy into heat-
energy, decades-long weather patterns, nuclear fusion taking place in the stars, or the
emergence of self-organizing life, complex systems remain to us a thing to be understood; a
puzzle begging to be solved by clever manipulations of electrochemical signals. Perhaps some
of the greatest questions that have been asked are concerned with topics of self-image — where
did we come from, how did we get here, and why are we here? Each of these questions remains
glaringly unsolved; puzzles that we have made great progress towards solving, but to which no
solution has been reached. I must acknowledge the fact that my research — and perhaps the
majority of all science — is, on some level, an attempt to make an iota of progress so that one

day we might understand.
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Introduction

Motivation

At present, there is a high demand for entities that can perform certain tasks in place of a human
peer. Some of the most obvious examples have already been implemented; astronauts, for
example, no longer make missions to the moon or Mars, but, instead, mechanical entities —
though not technically robots, since they are operated by a human agent, I use the term here for
convenience — are used to explore the harsh landscapes of such faraway places. This situation
makes the tradeoff of supporting the survival of a human explorer for the loss of efficiency that
is afforded by a human explorer. Robots are also becoming commonplace in search-and-rescue
operations where human rescuers would like to be able to search a volatile area for survivors
before risking their lives; such robots were used to search for survivors in the tragic attacks on
September 11th; again, a tradeoff between safety and efficiency is prominent. A wealth of
examples can immediately be thought of that could also benefit from such a tradeoff. Indeed,
robots have already saved the lives of hundreds of humans by diffusing improvised explosive

devices in combat situations.

In each of the cases above, the mechanical entity that is used requires a human operator to direct
the movements of the entity. If the human operator could be removed from the equation, the
amount of work that could be performed by the mechanical entity could increase significantly,
as operators require food, sleep, training, and breaks. Indeed, it seems unlikely that a proof of a
human’s fault tolerance under specific conditions is forthcoming anytime soon. Unfortunately,
the level of control mechanisms is incapable of supporting the tasks that would be required of



the robot. As such, there is a great need for the development of control algorithms to support
the work to be performed by the robot.

Still, robots captured our imagination well over fifty years ago in science fiction novels and
movies. These animated companions have been our best friend, our greatest enemy, or, in some
cases, our significant other. The robots in such stories often came equipped with super-human
capabilities and intelligences which allowed them to save or enslave us mere humans. Opposite
these fantastic characters of our imagination are the current generation of robots which instill a

much more sober perspective.

One of the components an entity must possess in order to be considered robotic is an ability to
sense the outside world; thus, a player piano cannot be considered robotic even though it is an
autonomous agent. However, sensory systems can be very complex; at present, the most
successful commercial robot navigates its terrain using a simple bumper mechanism in tandem
with virtual infrared walls. Although the robot will do a great job at its task, the level of
sophistication of its sensory mechanisms provide an indicator of our current climb to meet the

vision laid out by our imagination.

Simple sensory mechanisms akin to those of the robot described above appear in biological
creatures as well. Many “simpler” creatures rely on tactile senses to tell them when they
encounter an object. For instance, jellyfish have well-developed tactile senses that can let them
know when to defend, flee, or attack. Insects, in contrast, have a sense of vision, but their
ability to see is much closer to the way in which a robot ‘sees’ the virtual infrared walls than it
is to the manner in which we see something. Interestingly, the complexity level of sensory
mechanisms in biological creatures correlates well with our own subjective view of their

evolutionary progress.

Humans are primarily visual animals, with the other four senses left to fill in any gaps that are
left behind. It is our incredibly sophisticated vision system that allows us to efficiently navigate
the world, to construct and manipulate tools, and to interact with our fellow man. The
importance of vision has not been lost on robotics researchers, as it has been the focus of
intense study since we first began to imagine the possibilities of robots. However, the complex
nature of vision has stifled the progress of realizing even moderately capable robotic vision
systems. As an example of the complex situations that must be handled, consider the case



where you are sitting in an office that is lit by two primary, over-head sources. Now, if one of
the light sources is removed, the only change in your perception of the office is the change in
the amount and direction of the light. This is true despite the fact that none of your retinal cells
are receiving the same signal as they did before. How then can we have a robot know that the
image it sees of a chair now and an image of a chair it sees later under one of an infinite number
of combinations of light intensity and direction is the same chair? The answer is that no one

currently has a definitive answer.

Even though no one currently knows the answer to the question of how a robot is to distinguish
an object under various viewing conditions, many accomplished researchers have made
impressive progress in devising algorithms to perform likewise visual tasks. Most of these
algorithms involve some sort of statistical calculation on the pixels of the image and then
attempt to determine likely properties of the image based on the computed statistics. This has
resulted in some impressive computer vision algorithms such as optic flow analysis, edge
detection, and image segmentation. However, these capabilities pale in comparison to those

employed by even simple biological organisms, especially in the category of robustness.

If we are unable to devise algorithms that are able to compute the image properties required to
produce a capable robotic vision system, how are we supposed to create robots of sufficient
ability? One potential answer may come from another group of researchers that are just as
interested in figuring out how such tasks can be performed as roboticists are; this group of
researchers is the vision neuroscientists. Vision neuroscientists also want to know how it is that
one can recognize a chair under different viewing conditions; however, instead of using this
knowledge to build robotic vision systems, these researchers want to know how our own brain
performs complex visual mechanisms such as this. Indeed, visual neuroscience is a very active

area of research from which many important principles regarding vision have been uncovered.

In the present work, I propose a robotic vision system built solely using simulated artificial
neurons to perform certain visual tasks that would be beneficial to a larger robotic system that
incorporated it. The vision system has two overriding properties that should be considered at
each stage of the construction; (i) the system should follow as closely as possible
neuroanatomical and neurophysiological data; (ii) individual neurons in the system should
implement a known functional purpose. An inherent tradeoff will need to be made at each level

of the system, as artificial neurons that very accurately simulate their biological counterpart
3



