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Preface

This set of notes grew out of a course that I gave at Ohio University in the
spring of 1996. My aim was to give graduate students who were familiar
with ordinary character theory an introduction to Brauer characters and
blocks of finite groups.

To do that I chose an objective: the Glauberman Z*-theorem. This
theorem gives an excellent excuse for introducing modular representation
theory to students interested in groups. Glauberman’s outstanding result
is one of the major applications of the theory to finite groups. However, to
be able to prove it, one needs to proceed from the very basic facts to the
three main theorems of R. Brauer.

In Chapter 1, I prove what is absolutely necessary to get started. As-
suming that the students have already had a course on ordinary characters,
I use this chapter to remind them of some familiar ideas while introducing
some new ones.

In Chapter 2, I introduce Brauer characters (in the same spirit as in the
book of M. Isaacs) and develop their basic properties.

In Chapter 3, I introduce blocks and, in Chapter 4, Brauer’s first main
theorem is given. The second main theorem is proven in Chapter 5 and its
proof is a new “elementary” proof by Isaacs based on work by A. Juhdsz
and Y. Tsushima. The third main theorem is given in a very general form
and its proof is due to T. Okuyama. Once the third main theorem has been
proven, we are ready for the Z*-theorem.

After Glauberman’s theorem is completed, I include Chapter 8 on the
basic behaviour of Brauer characters. Blocks and Brauer characters of p-
solvable groups are studied in Chapter 10.

The relationship between blocks and normal subgroups (which is needed
in Chapter 10, but not for the Z*-theorem) is covered in Chapter 9.

Finally, in Chapter 11, I develop one of the highlights of the whole theory:
the description of the p-blocks of the groups with a Sylow p-subgroup of
order p.

ix



X Preface

When writing down this set of notes, I could not resist introducing several
topics which were not necessary to accomplish my objective, but which have
interest on their own. Perhaps some of them may be taught if time allows
it.

For many years, modular representation theory of finite groups was de-
veloped only through the incredible talent of Richard Brauer. I take this
opportunity to express my deepest admiration for his work.

These notes would not have been possible without the help of Martin
Isaacs, to whom I am very much indebted. Thomas Keller read the complete
set of notes which have thus benefited from his comments. Chris Puin helped
me with the English.

I also extend my thanks to G. Glauberman, M. Lewis, J. Muiioz, F.
Pérez Monasor, L. Sanus, W. Willems and T. Wolf.

Valencia
December, 1997
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1. Algebras

We will assume that all of our rings have an identity. If R is a ring, an
abelian group M is a left R-module if for every 7 € R and m € M, there
is a unique element rm € M such that

rla+b)=ra+rd,

(r+s)a=ra+sa,
(rs)a =r(sa),
lra=a

forall 7,s € R and a,b € M. In the same way, but multiplying on the right,
we define a right R-module.

If M and N are left R-modules, a map f : M — N is R-linear if f is
additive and f(rm) =rf(m) for all m € M and r € R.

(1.1) DEFINITION. Suppose that R is a commutative ring and suppose
that A is a left R-module. If A also is a ring such that

(ra)b = r(ab) = a(rb)

for all r € R and all a,b € A, we say that A is an R-algebra.

When we think of R-algebras, we have two important examples in mind:
Mat(n, R), the R-algebra of n x n matrices with entries in R and, for every
finite group G, the group algebra

RG = {Za9g|ag € R}
geG

with the multiplication of G extended linearly to RG. (In fact, representa-
tion theory studies the homomorphisms between RG and Mat(n, R).)

1



2 Chapter 1

Also, if A is any ring and R is a subring of Z(A) = {a € A|azx = za for
all z € A} (with the identity of A inside R), then A is an R-algebra.

If A and B are R-algebras, an algebra homomorphism is an R-linear,
multiplicative map f : A — B such that f(14) = 1p.

For the rest of this chapter, A is an R-algebra.

(1.2) DEFINITION. A left R-module V is said to be an A-module if V'
is a right A-module (A considered as a ring) such that for allv € V, r € R
and a € A, we have that

(rv)a = r(va) = v(ra).

One of the most important examples of an A-module is A itself with
right multiplication. This is usually called the regular A-module.

If V is an A-module, a subgroup W of V is an A-submodule if wa € W
for all w € W and a € A. Notice that A-submodules are necessarily R-
submodules since rv = v(rly) for 7 € R and v € V. Observe that the
A-submodules of the regular A-module are the right ideals of A.

If W is an A-submodule of V', then V/W is an A-module via

(v+W)a=va+W
forve V and a € A.

(1.3) DEFINITION. We say that a nonzero A-module V is simple if
its only A-submodules are 0 and V. (It is also common to say, in this case,
that V is irreducible.)

If V and W are A-modules, an additive map f : V — W such that
f(va) = f(v)a

for all v € V and a € A is an A-homomorphism of modules. A bijective
A-homomorphism is an isomorphism and we write V = W in this case.

Notice that A-homomorphisms are necessarily R-linear since f(rv) =
fu(rlag)) = fw)(r1a) =rf(v) forr€ Rand v € V.

If f:V — W is an A-homomorphism, then ker(f) = {v € V| f(v) = 0}
and Im(f) are A-submodules of V and W, respectively. Also, the map
v+ ker(f) — f(v) defines an isomorphism V/ker(f) = Im(f).

If V and W are A-modules, we write Hom 4 (V, W) for the abelian group
of all A-homomorphisms V' — W. If r € R and f € Homu(V, W), then
Homy (V, W) is a left R-module via (rf)(v) = rf(v) for v € V. The set of
all A-homomorphisms V' — V is denoted by End4 (V). It is easy to check
that End4 (V) is an R-algebra. Furthermore, R and Rly = {rly |r € R}
may be identified whenever R is a field.
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(1.4) LEMMA (Schur). Suppose that V and W are simple A-modules.
Then every nonzero A-homomorphism f : V. — W is invertible. As a
consequence, if R is an algebraically closed field and dimp (V') is finite, then
Enda (V) = R.

Proof. Suppose that f : V — W is nonzero. Since ker(f) and Im(f) are
A-submodules of V' and W, respectively, it follows that ker(f) = 0 and
Im(f) = W. Then f is bijective. To prove the latter assertion, we choose
0 # A € R, an eigenvalue of f. Then f — Aly € End4(V) is not invertible
and therefore f = A\ly, by applying the first part. ||

Sometimes, we use the fact that if R is an algebraically closed field
and f : V — W is a nonzero A-homomorphism between two simple finite
dimensional A-modules, then Homs(V,W) = {rf|r € R}. This easily
follows from the second part in Schur’s lemma.

If I is an ideal (we always mean double sided) of A, it is straightforward
to check that A/I is an R-algebra.

The annihilator of an A-module V is ann(V) = {a € A|va = 0 for
all v € V}. This is an ideal of A, and notice that we may view V as an
(A/ann(V'))-module.

We define the Jacobson radical of an R-algebra A to be the intersection
of all ann(V') where V' runs over all the simple A-modules. It is denoted by
J(A), and certainly it is an ideal of A.

The next result tells us where to find the simple A-modules.

(1.5) THEOREM. If A is an R-algebra and V is a simple A-module,
then there exists a maximal right ideal I of A such that V and A/I are
isomorphic. In fact, J(A) is the intersection of all maximal right ideals of
A.

Proof. If 0 #v € V, then v € vA = {va|a € A}. Thus, vA =V since vA
is a nonzero A-submodule of V. Now, the map a — wva from A onto V is
an A-homomorphism of A-modules. Since I = ann(v) = {a € A|va =0} is
the kernel of the map, A/I is isomorphic to V. The fact that V is simple
makes I a maximal right ideal of A. Now, if J is the intersection of all
maximal right ideals of A, we have that

JiC ﬂ ann(v) = ann(V)

veV

and thus J(A) contains J. Now, if L is any maximal right ideal, then A/L
is a simple A-module. Also, ann(A/L) C ann(1+4 L) = L. Hence, J(A) C L
for all such L. Thus J(A) C J and the proof of the theorem is completed.
|



4 Chapter 1

If J(A) is the unique maximal ideal of A, we say that A is local.

There is a useful fact about the elements of the Jacobson radical which
will be used later on.

(1.6) THEOREM. If A is an R-algebra and a € J(A), then 1 —a is
invertible.

Proof. If (1 —a)A < A, then the right ideal (1 — a)A is contained in some
maximal right ideal M of A. In this case, since J(A) C M, we have that
a € M and we conclude that 1 € M, a contradiction. Therefore, we see that
(1—a)A = A. Thus, we may find 1—b € A such that (1—-a)(1—-b) =1. We
just need to prove that (1 —b)(1 —a) = 1. Since (1 —a)(1 —b) = 1, we see
that b = a(b—1) € J(A). Hence, by the same reasoning as before, 1 — b has
a right inverse, say ¢. Now, 1 —a=(1—a)((1 —b)c) = ((1 —a)(1—b))c=c
and therefore 1 — b is a left and right inverse of 1 — a, as required. I

If V is an A-module, W C V and I is a right ideal of A, then W I denotes
the additive subgroup of V' generated by all the products wz with w € W
and x € I. Notice that W1 is an A-submodule of V. By repeated application
of this definition (with V' = A), we can define I" for every positive integer
n. The right ideal I is nilpotent if there is an n with I = 0. (Note that
I™ = 0 if and only if every product of n elements of I is zero.)

An A-module V is finitely generated if there exist v1,...,v, € V such
that

V=viA+...+v,A.

(1.7) LEMMA (Nakayama). Suppose that W is an A-submodule of
V' such that V/W is finitely generated over A. If V. = W + VJ(A), then
V=w.

Proof. It suffices to show the lemma for the case W = 0 and afterwards to
apply it to V/W. So we have that V is a finitely generated A-module such
that VJ(A) =V and we wish to prove that V =0. If V # 0, let X # () be
a minimal A-generating subset of V. Now,

V=V3IA4) = (D zA)I(A) =D zI(4).
zeX zeX
If y € X, then we may write
y= Z Tl
zeX
where a; € J(A). Now,
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and thus, by applying Theorem (1.6), we have that

y= Z maz(l—ay);l-

zeX—{y}

Therefore, X — {y} generates V over A which contradicts the minimality of
X. 1

From now until the end of this chapter, we assume that R = F'is a field.
Hence, from now on, every F-algebra is a vector space over F. We will
assume that A and, in general, every A-module have finite dimension over
F. Notice that, in this case, we may also assume that F' C Z(A) since the
map f — fla is an injective ring homomorphism from F' into Z(A).

(1.8) THEOREM. Suppose that A is an F-algebra. Then J(A) is the
unique maximal nilpotent right ideal of A. Moreover,

J(Z(A)) = J(A) N Z(A).

Proof. We have that J(A)" is an F-subspace of A, and thus it is finitely
generated over A (since A contains F). By Nakayama’s lemma (1.7), we
have that J(A)""" is smaller than J(A)", if this is nonzero. Hence, since
the dimension of A is finite, we see that J(A) is necessarily nilpotent. Now,
if I is a nilpotent right ideal of A and V is a simple A-module, then VI =0
or VI = V since VI is an A-submodule of V. If VI = V, then VI? =
(VI)I =VI =V and, in general, VI™ = V. But this is impossible because
there is an integer m with I™ = 0. Thus, VI = 0 for all simple A-modules
V and hence, I C J(A), as desired.

Finally, J(A) N Z(A) is a nilpotent ideal of Z(A) and therefore, by the
first part, it is contained in J(Z(A)). Now, let z € J(Z(A)). Since J(Z(A))
is nilpotent and commutes with the elements of A, we have that zA is a
nilpotent right ideal of A. Then z € J(A). This proves that J(Z(A)) C
JAYNZA). 1

(1.9) DEFINITION. If A is an F-algebra, we say that A is semisimple
if J(A) = 0. Also, we say that A is simple if it has no proper (two sided)
ideals.

Since A and A/J(A) have the same set of simple A-modules, it follows
that A/J(A) is semisimple.

An A-module V is said to be completely reducible if it is the direct
sum of simple A-submodules. (It is also common in this case to say that V/
is semisimple.) In fact, there is no difference between completely reducible
modules and modules which may be written as a sum (not necessarily direct)
of simple submodules.
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(1.10) LEMMA. Let V be an A-module and suppose V =)V, where
the V;’s are simple submodules. Then V is the direct sum of some of the
Vi's.

Proof. Since V has finite dimension, we let W be an A-submodule of V'
maximal with respect to the property that W is the direct sum of some of
the V;’s. If W is proper, then there exists a V; not contained in W. But
then, since Vj is simple, we have that V; N W =0. Then W 4 Vj is a direct
sum, which contradicts the maximality of W. |

More interesting is the next result.

(1.11) THEOREM. If A is an F-algebra and V is an A-module, then
the following conditions are equivalent.

(a) V is completely reducible.

(b) IfU is an A-submodule of V', then there is an A-submodule W such
that V=U®W.

Proof. Write V = 3 V;, where the V;’s are simple submodules, and suppose
that U is an A-submodule of V. Since V has finite dimension, let W be
an A-submodule of V' maximal such that U+ W =U & W. If U + W is
proper, then there is some V; not contained in U + W. Since Vj is simple,
V;N (U + W) = 0. Therefore, U + (V; + W) = U @ (V; + W), which
contradicts the maximality of W. This proves that (a) implies (b).

Assume (b) and, since V is finite dimensional, let U be an A-submodule
of V' maximal such that U is a sum of simple A-submodules. By hypothesis,
there is an A-submodule W of V such that V =U @ W. If W # 0, since V
is finite dimensional, we may find Wy, a simple submodule of V' inside W.
Then U + Wy > U, which contradicts the maximality of U. Hence, U =V
is completely reducible. |}

(1.12) COROLLARY. Suppose that V is a completely reducible A-
module. If U is an A-submodule of V, then U and V/U are completely
reducible.

Proof. By Theorem (1.11), we have that V/U is isomorphic to a submodule
of V. Hence, it suffices to show the first part. If W is an A-submodule of
U, again by Theorem (1.11) we know that there exists an A-submodule W
of V such that V.=W & W,. Then U =W & (U N Wy). This proves that
U is completely reducible. ]

If \q,...,V, are A-modules, we may form the external direct sum of
Vi,...,V,, which is denoted by V1 & ... &V, by setting V1 & ... ® V,, =
Vi x ... x V, with the action

(v1,...,vp)a = (v1a,...,vpa)
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for v; € V; and a € A. It is clear that if V; is a simple A-module for all ¢,
then Vi @ ... ® V,, is a completely reducible A-module.

(1.13) THEOREM. Suppose that A is an F-algebra. Then A is semisim-
ple if and only if every A-module is completely reducible.

Proof. Assume first that every A-module is completely reducible. If we
consider A, the regular A-module, by hypothesis we have that A = ) . I;
is a sum of minimal right ideals. Hence, J(A) = AJ(A) = 0 since J(A)
annihilates the simple A-module I; for all 7.

Assume now that A is semisimple. First, we prove that the regular A-
module A is completely reducible. To do that, we claim that there exist
maximal right ideals My, ..., M, of A such that

A=
Jj=1

If this is the case, the map a — (a+ M, ...,a+ M,) maps A isomorphically
into a submodule of the completely reducible A-module A/M;&...®A/M,.
Then, by Corollary (1.12), A is completely reducible. To prove the claim,
among the subspaces L of A which are intersections of a finite number of
maximal right ideals, we choose L of minimal dimension. If L # 0, then L is
not contained in J(A) = 0. Since J(A) is the intersection of all the maximal
right ideals of A (Theorem (1.5)), we have that there exists a maximal right
ideal M such that LN M < M. This contradicts the choice of L and proves
the claim.

Now, write A = ", I; as a sum of minimal right ideals of A. If V is an
A-module and B is an F-basis of V, we have that

V= Z’UI-,;.

vEB,i

Since the map I; — vI; given by z — vz is a surjective A-homomorphism
and I; is a minimal right ideal, it follows that the kernel of the map is I; or
zero. Hence, vI; is isomorphic to I; or 0. Therefore, V is a sum of simple
A-submodules, as required. ||

(1.14) COROLLARY. If A is a semisimple F-algebra and B is an ideal
of A, then the F-algebra A/B is semisimple.

Proof. If V is an (A/B)-module, then V is an A-module with va = v(a+B)
for v € V and a € A. Hence, V is a sum of simple A-submodules. Since
VB = 0, these are also simple (A/B)-submodules of V. Now, Theorem
(1.13) applies. |1



