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INTRODUCTION

In the academic year 1979-80, the Institute for Advanced Study and the
National Science Foundation sponsored special activities in differential
geometry, with particular emphasis on partial differential equations. In
this volume, we collect all the papers which were presented in the
seminars of that special program. Since there were many papers presented
in the areas of closed geodesics and minimal surfaces, all the papers in
these subjects have been collected in a separate volume. We would like
to thank all the speakers for their enthusiastic participation and their
cooperation in writing up their talks. We would also like to thank the

National Science Foundation for supporting this special year.

SHING-TUNG YAU
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Seminar on Differential Geometry






SURVEY ON PARTIAL DIFFERENTIAL EQUATIONS
IN DIFFERENTIAL GEOMETRY

Shing-Tung Yau =

In these talks, we are going to survey some analytic methods in
differential geometry. The basic tools will be partial differential equations
while the basic motivation is to settle problems in geometry or subjects
related to geometry such as topology and physics. We shall order our
exposition according to the nonlinearity of the partial differential equations
that are involved in the geometric problems. It should be emphasized that
these equations are related to each other in an intriguing manner, the major
reason being that all these equations serve the same purpose of under-
standing geometric phenomena.

It is obvious that nonlinear equations are more complicated than linear
equations and coupled systems of equations are more complicated than
scalar valued equations. However, we should bear in mind that the under-
standing of linear equations is of fundamental importance in understanding

nonlinear equations.

(I) Scalar Equations.
(A) Linear equations.

The basic linear operator in differential geometry is the Laplace-

Beltrami operator A = iy i ij i where ~-dxidxj is the
a pera \/ézéxl (\/ég P% zgll

i,j

*I would like to thank the typing staff at the Institute for Advanced Study for
their usual excellent work, and Robert Bartnik for his assistance in compiling the
bibliography.
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4 SHING-TUNG YAU

metric and g = det (gij)' Associated with this operator, we have the
Laplace equation, the heat equation and the wave equation. All these
linear operators are connected with the eigenfunctions. These are func-
tions u so that Au = -Au where A is a constant. Besides these linear
operators, we also have the linear operator associated with the bending of
the surface. If we consider a motion of a surface in three space which
preserves the metric up to the first order, the field of motion satisfies a
linear equation. If the surface is a graph of some function, this equation
can be interpreted as the linearized equation of the Monge-Ampére operator
which will be discussed later. The linear equation arising in this way is

rather complicated because it is of mixed type in general.

(B) Equations whose highest order term is linear.
The typical equation that appears has the form Au = F(x, u)
where F is a given smooth function. When we deform a metric conformally,
the equation has either the form Au = k, eu+k2 or Au = klup«r k,u where

p is a constant and k,, k, are given functions.

(C) Quasilinear equations.
The most important quasilinear equation in geometry is the minimal

surface equation which has the form

du
S 9 (& |_o.
i ox’ V1 +|Vul|?
Notice that the coefficients of the highest order term involve the first
derivatives of the unknown. This is what happens for quasilinear equations

in general.
(D) The Monge Ampére equation.
This equation is nonlinear even in the highest order term. It has

2
the form det Q - F for u defined on a domain in R™. If one
Ix1ox)
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2
studies complex analysis, one will study the equation det (——-a—i) = e
9z'9z)
These equations are closely related to the study of the curvature of a

manifold.

(II) Systems.
(A) Linear systems.

The most important linear systems are the systems of harmonic
forms, the Dirac equation, and the a-equation. The last is overdetermined
when the dimension of the complex space is greater than one. It makes
the system more rigid. The study of these systems is related to harmonic

theory.

(B) Linear systems whose highest order term is linear.
The typical system is the system of harmonic maps between
Riemannian manifolds. The other system is the Yang-Mills equation when

we choose a suitable gauge.

(C) Quasilinear systems.
As in the scalar case, the most important quasilinear system is

the system corresponding to minimal submanifolds.

(D) Systems associated to the isometric immersion of a Riemannian
manifold into another manifold.

This is an underdetermined system and the most celebrated work
was done by Nash [N1].

(E) Systems associated with a prescribed curvature tensor.

This may be considered as a generalization of the Monge-Ampére
equation to systems. The most important system is the Einstein Field
equation. The question is that given a tensor on the manifold, how do we
find a metric on the manifold so that some part of the curvature tensor is
the given tensor? In the case of the Einstein Field equation, we are given

the energy-stress tensor and we are asked to find a metric whose normalized
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Ricci tensor is this energy-stress tensor. If we are looking in the category

of Lorentz metrics, the system is hyperbolic.

8§1. The isoperimetric, Poincaré and Sobolev inequalities

We start with the most basic inequalities in analysis. These are the
Poincaré and Sobolev inequalities. The Poincaré inequality can be
derived from the Sobolev inequality while the Sobolev and isoperimetric
inequalities are essentially equivalent.

The Poincaré inequality states that for any compact manifold M with
boundary JdM, there exists a constant ¢ > 0 such that for any smooth

function f which vanishes on dM,

1.1) cff2§f|Vfl2.
M

M

The Sobolev inequality states that there exists a constant ¢”> 0 such

that for any smooth function f which vanishes on dM,

n-1

A
1.2) c(f f"-1> 5f|Vf|.

M M

Here n is the dimension of M.

These inequalities are for functions satisfying Dirichlet boundary con-
ditions. If we assume fo =0 instead of f=0 on oM, then the
inequalities (1.1) and (1.2) are still valid with different constants c and
¢’ (which are independent of f ). The condition fo =0 is usually
called the Neumann condition.

It should be noted that the inequality (1.2) implies that for all n>p>1:
n-p

(n-p)c’ s\ P ll)
b icil] s n-p V§|P

M M
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This is a simple application of the Holder inequality.

The Poincar€ inequality and the Sobolev inequality are basic tools in
the theory of partial differential equations. It turns out that the largest
positive constant ¢ in the Poincaré inequality is the smallest eigenvalue
for the Laplacian acting on functions satisfying the Dirichlet boundary
condition or the Neumann condition depending on the assumption f =0 on
oM or fo = 0. This is a consequence of the mini-max principle (see
Courant-Hilbert [CH] Vol. I, page 399).

In fact, let H be the Hilbert space of functions f on M so that
f |Vf|2 <o~ and f=0 on JdM in case we are dealing with the Dirichlet

of

boundary condition and % =0 on JM in case we are dealing with the

dv

Neumann condition. Then the spectral theory says that we can find a

countable orthonormal basis of H consisting of eigenfunctions f; with

(1.4) Af, = -Af

il
and

0 <Ay <A, < e

The mini-max principle asserts that

o e[ ([

M

() () o

M

and

This characterization of the eigenvalues of the Laplacian has been the
basic tool to estimate the eigenvalues. It is especially effective for the

first few eigenvalues.
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It is also well known (see [Ch2]) that A, is closely related to some

constants arising in the isoperimetric inequality. Let

(1.6) hD(M) = inf l\%ll(%) : Q is a compact
subdomain of M ]
and
o Vol (H) . :
A:7) hN(M) = inf ‘min Vol (Ml),Vol (Mz)) : H is a hypersurface of

M which decomposes M into M, and le.

Then by studying the level set of the first eigenfunction [Chl], one

can prove that

(1.8) A, > Lnooy?

S

for the first eigenvalue of the Dirichlet problem and
1 2
1.9) Ay 2> 7 hy (M)

for the first eigenvalue of the Neumann problem.

In this explicit form, (1.8) and (1.9) are due to Cheeger [Chl]. A
formula of this sort is still lacking for the Laplacian acting on differential
forms. Such a formula will give a better understanding of nonlinear elliptic
systems on a Riemannian manifold.

Inequalities (1.8) and (1.9) were used in [Y2] to give a lower estimate
of A, interms of some more precise geometric data of M. C. Croke [Cr]
was able to push [Y2] further by using an idea of Berger and Kazdan [Bes].
He was able to estimate the Sobolev constant for a compact Riemannian
manifold by the same geometric data as in [Y2].

The Sobolev inequality is equivalent to the isoperimetric inequality.
In fact, if Q is a compact subdomain in M and if we choose f in (1.2)
to be a function which approximates the characteristic function of ,

then taking the limit one obtains
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n-1

(1.10) c’(Vol Q) ™ < Vol (90)

which is the isoperimetric inequality for domains in M.

One can prove (see [FF]) that if (1.10) holds for all compact sub-
domains of M, then (1.2) holds. Hence a demonstration of (1.2) is re-
duced to a demonstration of (1.10).

To state the isoperimetric inequality of Croke, we define a constant
(). For each point x ¢, let Wy be the Lebesgue measure of the
set of all unit vectors v (_TX(Q) such that the geodesic issuing from x
with tangent v intersects dQ and the geodesic segment from x to its
first point of intersection with dQ has minimal distance. The quantity

w(Q) is defined to be min Wy
xe€)

In [Y2], we estimate h(M) in terms of w(M) and the diameter of M.
Croke then proved

(1.11) Vol ()" > ¢ w(@™! Vol ()"

where the equality holds if and only if w(2) =1 and Q is isometric to
a hemisphere of constant curvature.

If @ is a subdomain of a simply connected complete manifold without
conjugate points, then w(2) =1. If Q is a compact subdomain of a
general complete manifold M, then () can be estimated as follows:

Suppose {1 is a subset of some geodesic ball B(r) of radius r. For
each x € (), we can consider the exponential map exp, at x and its
Jacobian VE(x,y) at y e T (). As is well known ([BC)), an upper
bound of \/g can be estimated in terms of the lower bound of the Ricci

curvature of M. Using this function, we can estimate «({2) as follows:

(k+1)r -1
(1.11) () > Vol (B(kr)- B(r)) su&f sup VEG, It dt
X€
0

x,y=t

where X,y denotes the distance between x and y and k is any

number greater than one.



10 SHING-TUNG YAU

The proof of (1.11) is rather easy. One forms a cone by joining every
point in B(kr)-B(r) to x ¢ by a shortest geodesic. These geodesics
must intersect dQ. Hence @y, must be not less than the solid angle
formed by the cone. By computing the volume of this cone in terms of /g,
we obtain the formula (1.11).

If we have information about the Ricci curvature of M, we can esti-
mate /g as follows: Let (n-1)K be the lower bound of the Ricci curva-

ture of M where K< 0. Then

. V74 —1
1.12) TGy & (smh \/—Kr)n .

- VKr
where r =X,y.

In particular, if the Ricci curvature of M is nonnegative, then
VE (x,y) < 1. Hence it follows easily from (1.11), and (1.12) that
for a complete manifold with nonnegative Ricci curvature such that

lim Vol B())r™™ > 0, the isoperimetic inequality holds for all compact

r—o00

subdomains ) of M where the constant is independent of 1. As was
pointed out before, this means that the Sobolev inequality holds for smooth
functions with compact support for this class of manifolds.

The Sobolev inequality for functions with compact support is, of course,
very important. However, in applications, it is also very important to
prove a Poincar€ inequality or Sobolev inequality for functions without
compact support. This type of inequality is much more subtle and is much
more sensitive to the boundary of the domain under consideration. We
mention an inequality of this type in the following.

Let B(r) be the geodesic ball with radius r, and with fixed centre.
Let B> 0 be chosen so that

1.13) Vol ((1-B)r) = %Vol(B(r)).

Then using the method of [Y2], one can prove that for p>1,



