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PREFACE

The theory of spline functions and their applications is a relatively recent
development. As late as 1960. there were no more than a handful of papers
mentioning spline functions by name. Today, less than 20 years later, there
are well over 1000 research papers on the subject, and it remains an active
research area.

The rapid development of spline functions is due primarily to their great
usefulness in applications. Classes of spline functions possess many nice
structural properties as well as excellent approximation powers. Since they
are easy to store, evaluate, and manipulate on a digital computer, a myriad
of applications in the numerical solution of a variety of problems in
applied mathematics have been found. These include, for example. data
fitting, function approximation, numerical quadrature, and the numerical
solution of operator equations such as those associated with ordinary and
partial differential equations, integral equations, optimal control problems,
and so on. Programs based on spline functions have found their way into
virtually every computing library.

It appears that the most turbulent years in the development of splines
are over, and it is now generally agreed that they will become a firmly
entrenched part of approximation theory and numerical analysis. Thus my
aim here is to present a fairly complete and unified treatment of spline
functions, which, I hope, will prove to be a useful source of information for
approximation theorists, numerical analysts, scientists, and engineers.

This book developed out of a set of lecture notes which I began
preparing in the fall of 1970 for a course on spline functions at the
University of Texas at Austin. The material, which I have been reworking
ever since, was expanded and revised several times for later courses at the
Mathematics Research Center in Madison, the University of Munich, the
University of Texas, and the Free University of Berlin. It was my original
intent to cover both the theory and applications of spline functions in a
single monograph, but the amount of interesting and useful material is so
large that 1 found it impossible to give all of it a complete and compre-
hensive treatment in one volume.
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xii PREFACE

This book is devoted to the basic theory of splines. In it we study the
main algebraic, analytic, and approximation-theoretic properties of various
spaces of splines (which in their simplest form are just spaces of piecewise
polynomials). The material is organized as follows. In Chapters 1 to 3
background and reference material is presented. The heart of the book
consists of Chapters 4 to 8, where polynomial splines are treated. Chapters
9 to 11 deal with the theory of generalized splines. Finally, Chapters 12 to
13 are devoted to multidimensional splines. For the practical-minded
reader, I include a number of explicit algorithms written in an easily
understood informal language.

[t has not been my aim to design a textbook, per se. Thus throughout the
book there is a mixture of very elementary results with rather more
sophisticated ones. Still, much of it can be read with a minimum of
mathematical background—for example calculus and linear algebra. With
a judicious choice of material, the book can be used for a one-semester
introduction to splines. For this purpose I suggest drawing material from
Chapters 1 to 6, 8, and 12, with special emphasis on Chapters 4 and 5.

The notation in the book is quite standard. In order to keep the
exposition moving as much as possible, I have elected to move most of the
remarks and references to the end of the chapters. Thus each chapter
contains sections with remarks and with historical notes. In these sections I
have attempted, to the best of my ability, to trace the sources of the ideas in
the chapter, and to guide the reader to the appropriate references in the
massive literature.

I would like to take this opportunity to acknowledge some of the
institutions and individuals who have been of assistance in the preparation
of this book. First, I would like to thank Professor Samuel Karlin for
introducing me to spline functions when I was his graduate student at
Stanford in the early sixties. The Mathematics Research Center at the
University of Wisconsin gratiously supported me at two critical junctures
in the evolution of this book. The first was in 1966 to 1968 when the lively
research atmosphere and the close contact with such experts as Professors
T. N. E. Greville, M. Golomb, J. W. Jerome, and I. J. Schoenberg
sharpened my interest in splines and taught me much about the subject.
The support of the Mathematics Research Center again in 1973 to 1974
gave me a much needed break to continue work on the book.

In 1974 to 1975 I was at the Ludwig-Maximilians Universitdt in Munich.
My thanks are due to Professor G. Himmerlin for the invitation to visit
Munich, and to the Deutsche Forschungsgemeinschaft for their support.
Since January of 1978 I have been at the Free University of Berlin and the
Hahn-Meitner Atomic Energy Institute. I am grateful to Professors K.-H.
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Hoffmann and H.-J. Topfer for suggesting and arranging my visit, and to
the Humboldt Foundation of the Federal Republic of Germany for their
part in my support. Finally, I would like to express my appreciation to the
U.S. Air Force Office of Scientific Research and the Center of Numerical
Analysis of the University of Texas for support of my research over the
past several years.

Among the many colleagues and students who have read portions of the
manuscript and made useful suggestions, I would especially like to men-
tion Professors Carl deBoor, Ron DeVore, Tom Lyche, Charles Micchelli,
Karl Scherer, and Ulrich Tippenhauer. The task of tracking down and
organizing the reference material was formidable, and I was greatly
assisted in this task by Jannelle Odem, Maymejo Moody Barrett, Nancy Jo
Ethridge, Linda Blackman, and Patricia Stringer. Finally, I would like to
thank my wife Gerda for her constant support, and for her considerable
help in all stages of the preparation of this book.

LARRY L. SCHUMAKER

Britton, South Dakota



PREFACE TO THE 3RD EDITION

This book was originally published by Wiley-Interscience in 1981. A second edi-
tion was published in 1993 by Krieger. The two differ only in that a number of
misprints were corrected. Both editions are now out of print. However, spline func-
tions remain an active research area with important applications in a wide variety
of fields, including some, such as Computer-Aided Geometric Design (CAGD) and
Wavelets, which did not exist in 1981. This continued interest in the basic theory of
splines was the motivation for preparing this third edition of the book.

There have been many developments in the theory of splines over the past twenty-
five years. While it was not my intention of rewrite this book to cover all of these
developments, David Tranah of Cambridge University Press convinced me that it
would be useful to prepare a supplement to the book which gives an overview of the
main developments with pointers to the literature. Tracking down this literature was
amajor undertaking, and more than 250 new references are included here. However,
this is still far from a complete list. For an extended list, see the online bibliography at
www.math.vanderbilt.edu/~schumake/splinebib.html. I include
links there to a similar bibliography for splines on triangulations, and to the much
larger spline bibliography in TgX form maintained by Carl de Boor and 1.

Interpolation, approximation, and the numerous other applications of splines are
not treated in this book due to lack of space. Consequently, I have elected not to
discuss them in the supplement either, and the new list of references does not include
any applied papers or books.

I would like to thank my many colleagues and friends who provided references
to their recent work on splines. I am especially indebted to Carl de Boor, Oleg
Davydov, Kirill Kopotun, and Tom Lyche for their comments on an early draft of
the supplement. I am also grateful to Simon Foucart for a careful reading of the
final version. Finally, my deepest appreciation to my wife Gerda for her patience
over the many years it took to write this book and the companion book Splines on
Triangulations (with M.-J. Lai, Cambridge University Press, 2007).

February, 2007 Larry L. Schumaker
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INTRODUCTION

The first three chapters of this book are devoted to background material,
notation, and preliminary results. The well-prepared reader may wish to
proceed directly to Chapter 4 where the study of spline functions per se
begins.

§ 1.1. APPROXIMATION PROBLEMS

Functions are the basic mathematical tools for describing and analyzing
many physical processes of interest. While in some cases these functions
are known explicitly, very frequently it is necessary to construct approxi-
mations to them based on limited information about the underlying
processes. Such approximation problems are a central part of applied
mathematics. ‘

There are two major categories of approximation problems. The first
category consists of problems where it is required to construct an ap-
proximation to an unknown function based on some finite amount of data
(often measurements) on the function. We call these data fitting problems.
In such problems, the data are often subject to error or noise, and
moreover, usually do not determine the function uniquely. Data fitting
problems arise in virtually every branch of scientific endeavor.

The second main category of approximation problems arises from
mathematical models for various physical processes. As these models
usually involve operator equations that determine the unknown func-
tion, we refer to them as operator-equation problems. Examples include
boundary-value problems for ordinary and partial differential equations,
eigenvalue—eigenfunction problems, integro—differential equations, in-
tegral equations, optimal control problems, and so on. While there are
many theoretical results on existence, uniqueness, and properties of solu-
tions of such operator equations, usually only the simplest specific prob-
lems can be solved explicitly. In practice we will usually have to construct
approximate solutions.



2 INTRODUCTION

The most commonly used approach to finding approximations to un-
known functions proceeds as follows:

1. Choose a reasonable class of functions in which to look for an ap-
proximation.

2. Devise an appropriate selection scheme (=approximation process) for
assigning a specific function to a specific problem.

The success of this approach depends heavily on the existence of con-
venient classes of approximating functions. To be of maximal use, a class
@ of approximating functions should possess at least the following basic
properties:

1. The functions in & should be relatively smooth;

2. The functions in @ should be easy to store and manipulate on a digital
computer;

3. The functions in @ should be easy to evaluate on a computer, along
with their derivatives and integrals;

4. The class ¢ should be large enough so that arbitrary smooth functions
can be well approximated by elements of «.

We have required property 1 because functions arising from physical
processes are usually known to be smooth. Properties 2 and 3 are im-
portant because most real-world problems cannot be solved without the
help of a high-speed digital computer. Finally, property 4 is essential if we
are to achieve good approximations.

The study of various classes of approximating functions is precisely the
content of approximation theory. The design and analysis of effective
algorithms utilizing these approximation classes are a major part of numeri-
cal analysis. Both of these fields have a rich history, and a voluminous
literature.

The purpose of this book is to examine in considerable detail some
specific approximation classes—the so-called spline functions—which in
the past several years have proved to be particularly convenient and
effective for approximation purposes. Because of space limitations, we
shall deal only with the basic theoretical properties of spline functions.
Applications of splines to data fitting problems and to the numerical
solution of operator equations will be treated in later monographs.

§ 1.2. POLYNOMIALS

Polynomials have played a central role in approximation theory and
numerical analysis for many years. To indicate why this might be the case,
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we note that the space

P =1 p(x): p(x)= ¢,x' 7, Cloeer Gy X real] (1.1)

i=1
of polynomials of order m has the following attractive features:

1. ¢, is a finite dimensional linear space with a convenient basis;
2. Polynomials are smooth functions;

3. Polynomials are easy to store, manipulate, and evaluate on a digital
computer;

4. The derivative and antiderivative of a polynomial are again poly-
nomials whose coefficients can be found algebraically (even by a com-
puter);

S. The number of zeros of a polynomial of order m cannot exceed
m—1;

6. Various matrices (arising in interpolation and approximation by
polynomials) are always nonsingular, and they have strong sign-regularity
properties;

7. The sign structure and shape of a polynomial are intimately related to
the sign structure of its set of coefficients;

8. Given any continuous function on an interval [a,b], there exists a
polynomial which is uniformly close to it;

9. Precise rates of convergence can be given for approximation of
smooth functions by polynomials.

We shall examine each of these assertions in detail in Chapter 3, along
with a number of other properties of polynomials.

While this list tends to indicate that polynomials should be ideal for
approximation purposes, in practice, it has been observed that they possess
one unfortunate feature which allows for the possibility that still better
classes of approximating functions may exist; namely,

10. Many approximation processes involving polynomials tend to pro-
duce polynomial approximations that oscillate wildly.

We illustrate this feature of polynomials in Section 3.6. It is a kind of
inflexibility of the class .

§ 1.3. PIECEWISE POLYNOMIALS

As mentioned in the previous section, the main drawback of the space &,
of polynomials for approximation purposes is that the class is relatively
inflexible. Polynomials seem to do all right on sufficiently small intervals,
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but when we go to larger intervals, severe oscillations often appear—par-
ticularly if m is more than 3 or 4. This observation suggests that in order to
achieve a class of approximating functions with greater flexibility, we
should work with polynomials of relatively low degree, and should divide
up the interval of interest into smaller pieces. We are motivated to make
the following definition:

DEFINITION 1.1. Piecewise Polynomials

Leta=x,<x,< - <x, <x,,,;=b, and write A={x;}¢*". The set A parti-

tions the interval [a,b] into k+1 subintervals, I,=[x;,x,,,), i=0,1,...,
k-1, and I, =[x, x,,,]. Given a positive integer m, let

{ f: there exist polynomials
PP, (8)= PopPi---.Px in F,, with f(x)=p,(x) (1.2)
for x€1,i=0,1,.... k).

We call 9 P, (A) the space of piecewise polynomials of order m with knots
p J—

The terminology in Definition 1.1 is perfectly descriptive—an element
fEPP,.(A) consists of k+ 1 polynomial pieces. Figure 1 shows a typical
example of a piecewise polynomial of order 3 with two knots.

While it is clear that we have gained flexibility by going over from
polynomials to piecewise polynomials, it is also obvious that at the same
time we have lost another important property—piecewise polynomial
functions are not necessarily smooth. In fact, as shown in Figure 1, they
can even be discontinuous. In most applications, the user would be happier
if the approximating functions were at least continuous. Indeed, it is
probably precisely this defect of piecewise polynomials which accounts for
the fact that prior to 1960 they played a relatively small role in approxima-
tion theory and numerical analysis—for an historical account, see Section
1.6.

/\/
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a x, X,

Figure 1. A quadratic piecewise polynomial.



