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Foreword

The C Programmer’s Library is like two books in one. The first is a
textbook, making suggestions and showing examples on designing and
writing functions for your personal C library. This book demonstrates
several ways to analyze and attack problems that confront C pro-
grammers daily or weekly. The second book contains the functions and
programs. This book represents the first effort by a publisher to include
extensive and highly useful C source code in book form.

In writing this book, the authors noted two facts about the C language.
The core of C is portable and can be easily implemented on a variety of
processors under various operating systems. This portability of C
accounts for its increasing popularity. However, the C language is
incomplete without an operating system. Cis I/ O-less and must execute
under the shell of an operating system. This requires that the “standard
library” be customized for each operating system.

After witnessing the testing of the code in this book on twelve different
C compilers runningunder CP/ M®, MS-DOS®, Apple® DOS, QNX™,
and UNIX™ environments, I am convinced that the C standard library
is not so standard, nor has the C language been fully standardized. The
evident truth is that not all the functions and programs presented in this
book will work on many C compilers without modifications.

To compile the functions and programs in this book, you will need a C
compiler that meets or exceeds UNIX Version 7 specifications. This
means that the compiler must handle int, char, long, struct, and
union data types; typedef; and the ifndef preprocessor macro. The
float and double data types are not used in this book, although the
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sorting programs presented in Chapter 2 will work with float and
double.

In addition, the functions presented in Chapter 5 (ISAM) and the book
cataloger program in Chapter 6 make extensive use of set jmp() and
longjmp() functions. These functions must be available in your C
compiler for the routines in these chapters to compile and run
successfully.

Possibly, a compiler may meet these specifications and yet be unable to
compile the functions and programs in this book. Causes may be
insufficient RAM memory, the compiler’s lack of symbol or expression
table space, or nonstandard functions in the “standard library”—that is,
standard library functions that do not conform to Version 7 spec-
ifications.

All functions and programs were written, tested, and validated on the
Eco-C compiler. All functions and programs, except those presented in
Chapter 3, were tested and validated under the Portable C Compiler
(pcc) under the UNIX operating system.

A brief word about the programs is necessary. Chapter 2 presents three
sorting functions and an example disk-sorting program. Chapter 3
provides a terminal code handler and installation program. Presented
in Chapter 5 is a fully functional index sequential access manager
(ISAM). Chapter 6 contains a book-cataloging program that uses the
ISAM functions.

The terminal handler and installation program was designed for
programs running the CP/M and MS-DOS operating systems. Some
CP/M and MS-DOS computers have limited disk storage capacity.
Many of these machines use floppy disks. Programmers try to minimize
the number of files associated with a program so that the user can easily
copy the programs from one diskette to another. For these reasons the
terminal installer modifies the object code; this practice is acceptable
and even desirable in the CP/M and MS-DOS worlds but loathed by
the UNIX programmer.

In the UNIX world, the termcap and curses libraries for terminal
handling are used. The functions and programs presented in Chapter 3
are inapplicable to the UNIX environment. This is the reason the code
in Chapter 3 was not validated on pce.
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The book cataloger in Chapter 6 required modification to compile and
execute under pcc. The cataloger, which uses the terminal-handling
routines in Chapter 3, was rewritten with the termcap and curses
functions and was successfully compiled and validated. However, this
modified version of the book cataloger is not presented in this book.

In Chapter 5 the ISAM functions have been heavily cast to minimize
the potential conflicts between computers using different CPUs. This
casting, unnecessary for 8-bit CPUs, was critical to ensure that the code
would function properly with C compilers on 16-bit and 32-bit CPU
computers.

Because of the differences among the CP/M, MS-DOS, and UNIX
environments and corresponding C compilers, editor’s notes appear at
the beginning of several chapters to warn of the machine- or compiler-
specific issues that must be addressed for the various compilers and
operating systems.

Note that the data files produced by these programs are not guaranteed
to be portable. This problem is CPU-specific. For example, some CPUs
store integers in a low-byte, high-byte sequence, whereas other CPUs
store integers in a high-byte, low-byte sequence.

Appendix E summarizes the modifications needed to make the
functions and programs work in the UNIX environment.

Appendix F provides the results of the tests on the various CP/M and
MS-DOS C compilers. This appendix also summarizes what mod-
ifications may be necessary to run the programs with other C compilers.

I wish to thank Greg Dunn, who tested the functions and programs on
various C compilers running under Apple DOS, CP/M, and MS-DOS;
and Jim Fleming, who validated the functions and programs under
UNIX and provided helpful insights on portable programming.
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For increased legibility, the functions, programs, examples, C key-
words, and file names are set in a font called Digital. This font is
reproduced below.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghi jklmnopgrstuvwxyz
0123456789

IBHSX &% ( )+ |
-="N\[1:57¢>7,. 274}

A ruler line is provided below to help you count the spaces in a program
line.

0 1 1 2 2 3 3 4 4 S S
123456789012345678901234567890123456783012345678901234567830

Chris DeVoney

Xiv



Preface

There has been a growing interest in C in the past few years; we need not
repeat its strong points here. This interest is evidenced by an increasing
number of introductory books on C. Such books, by necessity, must use
fairly simple coding examples to teach any given concept. Our
experience is that the C programmers who have mastered the first level
of the language view it as a high-performance race car: they know the
power is there, but they haven’t yet gained the driving experience to use
it to its full potential. Part of this lack of experience is that relatively
little published material is commercially available that presents a view
of C based on more sophisticated examples and techniques designed to
teach the awesome power that C offers.

This book is designed for the C programmer who is comfortable with
the general structure of C but wants to tap the second level of power that
C offers. The book has three primary sections. The first is designed to
teach the reader to view the C data types in a more formal manner. This
is crucial for understanding complex data structures. The second
section draws on material in the first section to present a general
methodology for library development. The third section provides
coding examples to reinforce your understanding of earlier topics that
complement your C library. Although numerous routines and pro-
grams are presented throughout the text, they should not be viewed as
ends in themselves.

The entire source code presented in this book is available on magnetic
media. Cursor functions and the ISAM library are broken into succinct
modules for easier editing and implementation. Additionally, the delete
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function for ISAM (which does not appear in the book) is included on
the media. This media form of the source code, which will save the
programmer hours of typing and debugging, is available directly from
Que for $124.95.

Many people have contributed to this text in a variety of ways. We
would especially like to recognize Chris DeVoney, who served as
technical editor of the project; Kim Brand for his (often comical)
comments on earlier drafts of the manuscript; Jim Fleming and Greg
Dunn for testing the code under a variety of C compilers and operating
system environments; about three dozen people at Que, who con-
tributed in various ways to the book; and to Bill Burton for no
particular reason.

Jack Purdum
Tim Leslie
Alan Stegemoller

Indianapolis, 1984
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Laying the Groundwork

Give aman a fish, and you feed him for aday. Teach a man to fish,
and you feed him for a lifetime.

— Chinese Proverb

Writing a program in C is fairly straightforward. Most programmers
begin with an outline of the task to be performed. This outline is usually
written in pseudocode, which is an imaginary, English-like language
with some of the underlying syntax of C. (For a more complete
discussion of pseudocode, see Chapter 3 of Que’s C Programming
Guide.) If properly done, the pseudocode outline should identify all the
C functions needed in the program.

Usually, most of the C functions a program requires are already part of
your standard C library. Although the word standard may suggest that
all function libraries are the same, they are not (C Programming Guide,
Chapter 1).

Some C compilers have a few dozen library functions, whereas others
have more than a hundred. To make matters worse, each compiler
implementer is free to assign different names to library functions that
perform identical tasks.
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