B
= o
\

LIBRARY

oue

C Programmer’s Library

Jack J. Purdum
Timothy C. Leslie
Alan L. Stegemoller

Que Corporation
Indianapolis

C Programmer’s Library. Copyright © 1984 by Jack J. Purdum,
Timothy C. Leslie, and Alan L. Stegemoller.

Allrights reserved. Printed in the United States of America. No part of
this book may be reproduced in any form or by any means, or storedina
data base or retrieval system, without prior written permission of the
publisher except in the case of brief quotations embodied in critical
articles and reviews. Readers may use the programs and functions in
this book for personal use. Any commercial use of these programs and
functions must credit C Programmer’s Library as their source. For
information, address Que Corporation, 7999 Knue Road, Suite 202,
Indianapolis, Indiana 46250.

Library of Congress Catalog No.: LC 83-62490
ISBN 0-88022-048-1

88 87 86 85 84 876543

Interpretation of the printing code: the rightmost double-digit number
is the year of the book’s printing; the rightmost single-digit number, the
number of the book’s printing. For example, a printing code of 83-4
shows that the fourth printing of the book occurred in 1983.

About the Authors

Jack J. Purdum

Dr. Purdum received his B.A. degree from Muskingum College and
M.A. and Ph.D. degrees from Ohio State University. He is currently
Associate Professor of Economics at Butler University, where he
teaches both computer programming and economics courses. Dr.
Purdum has received many teaching and research awards, including a
National Science Foundation grant to study microcomputers in
education. He has published a number of professional articles; a BASIC
programming text; and magazine articles in Byte, Personal Computing,
and Interface Age. He is also the author of the best seller, C
Programming Guide, published by Que Corporation. Dr. Purdum is
president of Ecosoft, Inc., a software house that specializes in micro-
computer software.

Timothy C. Leslie

Mr. Leslie studied math and physics at Indiana University before
becoming a system analyst in the U.S. Armyin 1970. From 1974 to 1978
he was the Army’s Chief Data Processing Branch in Berlin. Later, as a
civilian, he was the system analyst for Ecocardiology with Microsonics,
Inc., from 1981 to 1982. Currently, Mr. Leslie is Director of Software
Development for Ecosoft, Inc.

Alan L. Stegemoller

Mr. Stegemoller received his B.S. degree in Electrical Engineering from
Purdue University in 1975. From 1978 to 1983 he worked for Digilog
Dynamics, Inc., and served as senior engineer in the field of hardware
and software design for Medical Image Processing Systems. Currently,
he is self-employed as a consulting engineer for Microsonics, Inc., a
manufacturer of medical imaging hardware, and for Ecosoft, Inc. Mr.
Stegemoller is coauthor of Ecosoft’s Eco-C C compiler.

iii

iv

Editorial Director
David F. Noble, Ph.D.
Editors
Diane F. Brown, M.A.
Pamela Fullerton
Virginia D. Noble, M.L.S.
Managing Editor
Paul Mangin
Technical Editor
Chris DeVoney

Technical Consultants

Greg Dunn
James Fleming, Ph.D.

Dedication

In fond memory of my mother,
Janette B. Purdum.

J. 1. P

To my parents, Carl and Emily Leslie.
T.C. L.

To my parents, Henry and Ethel Stegemoller.
A.L.S.

Foreword

The C Programmer’s Library is like two books in one. The first is a
textbook, making suggestions and showing examples on designing and
writing functions for your personal C library. This book demonstrates
several ways to analyze and attack problems that confront C pro-
grammers daily or weekly. The second book contains the functions and
programs. This book represents the first effort by a publisher to include
extensive and highly useful C source code in book form.

In writing this book, the authors noted two facts about the C language.
The core of C is portable and can be easily implemented on a variety of
processors under various operating systems. This portability of C
accounts for its increasing popularity. However, the C language is
incomplete without an operating system. Cis I/ O-less and must execute
under the shell of an operating system. This requires that the “standard
library” be customized for each operating system.

After witnessing the testing of the code in this book on twelve different
C compilers runningunder CP/ M®, MS-DOS®, Apple® DOS, QNX™,
and UNIX™ environments, I am convinced that the C standard library
is not so standard, nor has the C language been fully standardized. The
evident truth is that not all the functions and programs presented in this
book will work on many C compilers without modifications.

To compile the functions and programs in this book, you will need a C
compiler that meets or exceeds UNIX Version 7 specifications. This
means that the compiler must handle int, char, long, struct, and
union data types; typedef; and the ifndef preprocessor macro. The
float and double data types are not used in this book, although the

xi

sorting programs presented in Chapter 2 will work with float and
double.

In addition, the functions presented in Chapter 5 (ISAM) and the book
cataloger program in Chapter 6 make extensive use of set jmp() and
longjmp() functions. These functions must be available in your C
compiler for the routines in these chapters to compile and run
successfully.

Possibly, a compiler may meet these specifications and yet be unable to
compile the functions and programs in this book. Causes may be
insufficient RAM memory, the compiler’s lack of symbol or expression
table space, or nonstandard functions in the “standard library”—that is,
standard library functions that do not conform to Version 7 spec-
ifications.

All functions and programs were written, tested, and validated on the
Eco-C compiler. All functions and programs, except those presented in
Chapter 3, were tested and validated under the Portable C Compiler
(pcc) under the UNIX operating system.

A brief word about the programs is necessary. Chapter 2 presents three
sorting functions and an example disk-sorting program. Chapter 3
provides a terminal code handler and installation program. Presented
in Chapter 5 is a fully functional index sequential access manager
(ISAM). Chapter 6 contains a book-cataloging program that uses the
ISAM functions.

The terminal handler and installation program was designed for
programs running the CP/M and MS-DOS operating systems. Some
CP/M and MS-DOS computers have limited disk storage capacity.
Many of these machines use floppy disks. Programmers try to minimize
the number of files associated with a program so that the user can easily
copy the programs from one diskette to another. For these reasons the
terminal installer modifies the object code; this practice is acceptable
and even desirable in the CP/M and MS-DOS worlds but loathed by
the UNIX programmer.

In the UNIX world, the termcap and curses libraries for terminal
handling are used. The functions and programs presented in Chapter 3
are inapplicable to the UNIX environment. This is the reason the code
in Chapter 3 was not validated on pce.

Xii

The book cataloger in Chapter 6 required modification to compile and
execute under pcc. The cataloger, which uses the terminal-handling
routines in Chapter 3, was rewritten with the termcap and curses
functions and was successfully compiled and validated. However, this
modified version of the book cataloger is not presented in this book.

In Chapter 5 the ISAM functions have been heavily cast to minimize
the potential conflicts between computers using different CPUs. This
casting, unnecessary for 8-bit CPUs, was critical to ensure that the code
would function properly with C compilers on 16-bit and 32-bit CPU
computers.

Because of the differences among the CP/M, MS-DOS, and UNIX
environments and corresponding C compilers, editor’s notes appear at
the beginning of several chapters to warn of the machine- or compiler-
specific issues that must be addressed for the various compilers and
operating systems.

Note that the data files produced by these programs are not guaranteed
to be portable. This problem is CPU-specific. For example, some CPUs
store integers in a low-byte, high-byte sequence, whereas other CPUs
store integers in a high-byte, low-byte sequence.

Appendix E summarizes the modifications needed to make the
functions and programs work in the UNIX environment.

Appendix F provides the results of the tests on the various CP/M and
MS-DOS C compilers. This appendix also summarizes what mod-
ifications may be necessary to run the programs with other C compilers.

I wish to thank Greg Dunn, who tested the functions and programs on
various C compilers running under Apple DOS, CP/M, and MS-DOS;
and Jim Fleming, who validated the functions and programs under
UNIX and provided helpful insights on portable programming.

Xiii

For increased legibility, the functions, programs, examples, C key-
words, and file names are set in a font called Digital. This font is
reproduced below.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghi jklmnopgrstuvwxyz
0123456789

IBHSX &% ()+ |
-="N\[1:57¢>7,. 274}

A ruler line is provided below to help you count the spaces in a program
line.

0 1 1 2 2 3 3 4 4 S S
123456789012345678901234567890123456783012345678901234567830

Chris DeVoney

Xiv

Preface

There has been a growing interest in C in the past few years; we need not
repeat its strong points here. This interest is evidenced by an increasing
number of introductory books on C. Such books, by necessity, must use
fairly simple coding examples to teach any given concept. Our
experience is that the C programmers who have mastered the first level
of the language view it as a high-performance race car: they know the
power is there, but they haven’t yet gained the driving experience to use
it to its full potential. Part of this lack of experience is that relatively
little published material is commercially available that presents a view
of C based on more sophisticated examples and techniques designed to
teach the awesome power that C offers.

This book is designed for the C programmer who is comfortable with
the general structure of C but wants to tap the second level of power that
C offers. The book has three primary sections. The first is designed to
teach the reader to view the C data types in a more formal manner. This
is crucial for understanding complex data structures. The second
section draws on material in the first section to present a general
methodology for library development. The third section provides
coding examples to reinforce your understanding of earlier topics that
complement your C library. Although numerous routines and pro-
grams are presented throughout the text, they should not be viewed as
ends in themselves.

The entire source code presented in this book is available on magnetic
media. Cursor functions and the ISAM library are broken into succinct
modules for easier editing and implementation. Additionally, the delete

XV

function for ISAM (which does not appear in the book) is included on
the media. This media form of the source code, which will save the
programmer hours of typing and debugging, is available directly from
Que for $124.95.

Many people have contributed to this text in a variety of ways. We
would especially like to recognize Chris DeVoney, who served as
technical editor of the project; Kim Brand for his (often comical)
comments on earlier drafts of the manuscript; Jim Fleming and Greg
Dunn for testing the code under a variety of C compilers and operating
system environments; about three dozen people at Que, who con-
tributed in various ways to the book; and to Bill Burton for no
particular reason.

Jack Purdum
Tim Leslie
Alan Stegemoller

Indianapolis, 1984

Xvi

Table of Contents

Foreword
Preface

Chapter 0 Laying the Groundwork

The Purpose of This Book

Analysis

Generalization

Taking Full Advantage of C

Knowing C vs. Knowing the Compiler
Knowing C and Knowing C

Code Readability

Developing and Testing a Function
Data Types

Chapter 1 Understanding C Data Types

Data Types
Simple
Aggregate
Data Declarations
Attributes
Terminating Attributes
Intermediate Attributes
Attribute Lists
Defining Variables in C
Using Variables
Using Variables in Context
Functions

vii

typedef’s 27

Creating a Variable Declaration from an Attribute List 28
Expressions and Their Impact on Attribute Lists 31
Resolved Data Types 33

How Context Alters the Currently Active Attribute 37
Casts 42
Formalize Your Thinking 42
Editor’s Note to Chapter 2 45
Chapter 2 Sorting 47
Generalization 47
Tradeoffs 48
Library Routines vs. Function Calls 49

~ A Word of Warning 49

A Generalized Bubble Sort 50
Identifying Areas of Generality 51

Why Use a Pointer to Function? 56
Other Design Considerations 61

A Shell Sort 62

A Quick Sort 65
Recursive Function Calls 65

The Stack 68

A Quick Sort and Recursion 71

A Sample Sort Program 77
Reading the Parameter File 87

A Look at the Disk Sort Program 90
Compares and Swaps 93
Editor’s Note to Chapter 3 95
Chapter 3 The General Terminal Library 97
Terminal Commands 98
The Terminal Command Installation Program 99
Cursor Addressing 122
The Installation Function 151
The doins () Function 157

An Example Using the Terminal Command Codes 160
Chapter 4 Code Fragments 165
Heads and Tails 168
One-Way Linked Lists 169

Inserting into and Deleting from a One-Way Linked List 170

viii

Circular Linked Lists 172

Two-Way Linked Lists 172
Inserting into and Deleting from a Two-Way Linked List 174

LIFO and FIFO with Linked Lists 176
Traversing Binary Trees 180
Pre-Order Traversal 181
In-Order Traversal 182
Post-Order Traversal 182
Preferred Coding Techniques 183
sizeof 184
typedef 184
f#define 185
Editor’s Note to Chapter 5 187
Chapter 5 ISAM 189
A Hypothetical ISAM Example 190
An Additional Improvement 193
Memory Windows 195
Balancing Side Links 196
Adding Keys to an Index 197

Free Memory Allocation Definitions 199
The Global Structure 206
Derived Information for Memory Map 206

Data from Index Files 210

Macro Definitions for Structure References 211
Using Macros for Pointer Arithmetic 211
Additional Definitions 212
Creating an Index 214
Primary ISAM Library Functions 219
Opening an Index : 232
Writing to an Index 232
Reading the Index 232

The insert () Function 246
Editor’s Note to Chapter 6 289
Chapter 6 A Book Catalog Program 291
Creating Index and Data Files 294
The Catalog Program Control Module 299
The Primary Functions of a Catalog Program 303

Catalog Program User Input/Output Support Functions 312

1X

The ISAM Interface Module 326

Concluding Thoughts 342
Appendix A 343
Appendix B 347
Appendix C 349
Appendix D 350
Appendix E 351
Appendix F 353
Bibliography 360

Index 361

Laying the Groundwork

Give aman a fish, and you feed him for aday. Teach a man to fish,
and you feed him for a lifetime.

— Chinese Proverb

Writing a program in C is fairly straightforward. Most programmers
begin with an outline of the task to be performed. This outline is usually
written in pseudocode, which is an imaginary, English-like language
with some of the underlying syntax of C. (For a more complete
discussion of pseudocode, see Chapter 3 of Que’s C Programming
Guide.) If properly done, the pseudocode outline should identify all the
C functions needed in the program.

Usually, most of the C functions a program requires are already part of
your standard C library. Although the word standard may suggest that
all function libraries are the same, they are not (C Programming Guide,
Chapter 1).

Some C compilers have a few dozen library functions, whereas others
have more than a hundred. To make matters worse, each compiler
implementer is free to assign different names to library functions that
perform identical tasks.

1

