Yuxin Deng
BEM Z

Semantics of
Probabilistic
Processes

An Operational Approach

MR HEIRIE R (SR

&) R e &) Springer

A FE A FREAF A2 T8 R

Semantics of Probabilistic Processes

HE =R R X
(3 3Chin)

Yuxin Deng

REK F

YELLAH it @ Springer

SHANGHAI JIAO TONG UNIVERSITY PRESS

B H R4 B (CIP) ¥iiE

ME R R IE S /BB R, — b b 38l KA
#,2015
ISBN 978 -7 -313-13821-7

[.O# 0.0 M.OMBIFEREB T3 V.
o211, 1

ep [A B B CIP B0 2% 77 (2015) 58 235215 &5

Not for sale outside the Mainland of China
(Not for sale in Hong Kong SAR, Macau SAR, and Taiwan,

and all countries except the Mainland of China)

HEZE i3 12 1F W (ESThR)

& #: AP EK

R A AT e 1 TR AC 0 KA AL Hh Hb e b A B 951 5
B B 445 . 200030 i, . 021 -64071208

o A AR
Ep i« RN TR B A BR 22) 2 . 2EFERL

JF A 710mm X 1000mm 1/16 Ef 5. 16. 25

= ¥, 506 FF

i YC: 2015 4F 11 J145 1 i Ep YC: 2015 4 11 155 1 CE Al
4 2, ISBN 978 -7 —313 - 13821 -7/0

E #r: 88.00 JT

WAL T A A2 B 5T
L A0 A BUAS A5 AT B IR R n] U S 00 T R R
R HLE: 0512 - 68180638

Preface

Probabilistic concurrency theory aims to specify and analyse quantitative behaviour
of concurrent systems, which necessarily builds on solid semantic foundations of
probabilistic processes. This book adopts an operational approach to describing the
behaviour of nondeterministic and probabilistic processes, and that the semantic
comparison of different systems is based on appropriate behavioural relations such
as bisimulation equivalence and testing preorders.

It mainly consists of two parts. The first part provides an elementary account of
bisimulation semantics for probabilistic processes from metric, logical and algorith-
mic perspectives. The second part sets up a general testing framework and specialises
it to probabilistic processes with nondeterministic behaviour. The resulting testing
semantics is treated in depth. A few variants of it are shown to coincide, and they
can be characterised in terms of modal logics and coinductively defined simulation
relations. Although in the traditional (nonprobabilistic) setting, simulation semantics
is in general finer than testing semantics because it distinguishes more processes for
a large class of probabilistic processes, the gap between simulation and testing se-
mantics disappears. Therefore, in this case, we have a semantics where both negative
and positive results can be easily proved: to show that two processes are not related
in the semantics, we just give a witness test, and to prove that two processes are
related, we only need to establish a simulation relation.

While most of the results have been announced before, they are spread over several
papers in the period from 2007 to 2014, and sometimes with different terminology
and notation. This prevents us from having a comprehensive understanding of the
bisimulation and testing semantics of probabilistic processes. In order to improve
the situation, the current work brings all the related concepts and proof techniques
to form a coherent and self-contained text.

Besides presenting the recent research advances in probabilistic concurrency the-
ory, the book exemplifies the use of many mathematical techniques to solve problems
in Computer Science, which is intended to be accessible to postgraduate students in
Computer Science and Mathematics. It can also be used by researchers and practi-
tioners either for advanced study or for technical reference. The reader is assumed to
have some basic knowledge in discrete mathematics. Familiarity with real analysis
is not a prerequisite, but would be helpful.

ii Preface

Most of the work reported in this book was carried out during the last few years
with a number of colleagues. The testing semantics for probabilistic processes was
developed in conjunction with Rob van Glabbeek, Matthew Hennessy, Carroll Mor-
gan and Chenyi Zhang. The various characterisations of probabilistic bisimulation
in Chap. 3 are based on joint work with Wenjie Du.

The BASICS laboratory at Shanghai Jiao Tong University has offered a creative
and pleasant working atmosphere. Therefore, I would like to express my gratitude to
Yuxi Fu and all other members of the laboratory. Thanks go also to Barry Jay, Matthew
Hennessy and Carroll Morgan for having read parts of the first draft and provided
useful feedback. My research on probabilistic concurrency theory has been sponsored
by the National Natural Science Foundation of China under grants 61173033 and
61261130589, as well as ANR 121502001 “PACE”.

Finally, my special gratitude goes to my family, for their unfailing support.

Shanghai Yuxin Deng
September, 2014

List of Symbols

PH(O)

* @i

=]

24
45
103
73
149
42
43
43
72
72
72
76
76
87
84
224
138
104
120
104
121
128
207
151
196
233
74
71

<Sm

Emust

~
—must

Epmust
2

Epmust
2

Eermust

C
—=nrmust
E rrmust

E Epnus

C

g
Ers
~
—FS
0
—FS§
€
<
FS
4(
FS

—ep

[

T
—

13
15
45
49
103
74
196
42
53

44
72
72
72
76
76
87
84
224
138
104
120
104
121
210
192
199
234
91

23
119

h
Clﬂl n

Vh

min

Vi,
A(T, P)
A:'Jnin

AXT, P)

toX
[Al

D(S)
P(X)
m
H;(X,Y)
Img ((®)

h-0
¢
IP1

A
Ch(R)

[s]
dp(s) |

V(4a)
Der,,
(8

120
168
183
104
120
84
86
75
87
93
93
71
87
169
24
157
19
19
19
33
36
54
73
74
81
104
107
130
159
155
168
176
169
181
205
177

104

X

IR

|A|

AN

'Dmh(s)

el

m

2

Exp,(f). f(A)
T,

Yp

Ve

Act?
Q[x— P]
a;

e

(4]
dp(s) t
Plrnax
P(S.dp.r
F&.dp.r

div

List of Symbols

159

128
181
200
104
75
93
87
84
87
110
93
84
87
1
16
154
19
33
19
45
34
73
73
74
104
135
109
152
159
150
168
176
177
184
182
211

Contents

1 Imtroduction 1
1.l BAckproud . .meesme cnsmsmsnmems ps sins s @rms s @a@odsonssaa 1

12 SYNOPSIS ¢ nwvvieimsn s isdis @ babis®s@s s s ®s s mssnesodsms s 3
Referenceso oo 5

2 Mathematical Preliminaries, 7
2.1 Lattice TREOLY :wiwissasevisermessavamensonssamssesinsisiass 7
2.2 Induction and Coinductionoiiiniiiiiinnnenann 10
2.3 Topological Spacesiiiiiiiiiiiii 13
2.4 MELriC SPacCes. . ..ot i ettt 15
2.5 Probability Spacesot 18
2.6 Linear Programminguuueuteiurniiinannn 19
REFEIEINCESttt i et e e e 22

3 Probabilistic Bisimulation 23
3.1 IntrodUStion v eesamswevvimsines ses s w e sasmessasesomssiss 23

3.2 Probabilistic Labelled Transition Systems 25
3.3 LiftingRelations i 27
3.4 Justifying the Lifting Operation...............ooiiiiiin, 32
3.4.1 Justification by the Kantorovich Metric 32

3.4.2 Justification by Network Flow.......................... 38

3.5 Probabilistic Bisimulation o oo 42
3.6 Logical Characterisationooiiiiiiiiuiiinneennn. 44
3.6.1 AnAdequateLogic.......... i, 45

3.6.2 AnExpressive LogiC. ...l 48

3.7 Metric CharacteriSation. . . «viscssssssasansisssmsmseasmssssnsase 52
3.8 Algorithmic Characterisationooiiuiiianiann. 56
3.8.1 A Partition Refinement Algorithm 56

3.8.2 An“On-the-Fly” Algorithm............................ 59

3.9 Bibliographic NOtESttt 63

Contents

3.9.1 ProbabilisticModels...............oooiiiiiiiiiiii 63
3.9.2 Probabilistic Bisimulation 64
Referencesot 65
Probabilistic Testing Semantics, 71
4.1 A General Testing Framework oo 71
4.2 Testing Probabilistic Processes 1713
4.3 Bounded ContinuUityc..uvieiinnenerinnnnernnneenns 77
44 Reward Testing:v.vivivsvsisisrsniarcisiinssamin s 81
4.4.1 A Geometric Property............ 81
442 Nonnegative Rewards....................cciiiiini... 84
4.5 Extremal Reward Testingiiiiiiia.... 85
4.6 Extremal Reward Testing Versus Resolution-Based Reward Testing. 88
4,6.1 MuStTestingvvieeriiinetiiiii it 89
462 MayTesting.......coouuiiiiiiiiiiiiiiiiiieian.. 92
4.7 Vector-Based Testing Versus Scalar Testing 97
4.8 Bibliographic NOtesoouiiiiiiiiiiiiiiiiin 100
RETETENCES 5 s oz v enimsios bsm s aias s s s de S88.03 Mam s B i HaE 00536 E 101
Testing Finite Probabilistic Processes 103
5.1 Introduction 103
5.2 The Language POSP o .u:avossmimossaie nsiwaimniossionsaasisssms 105
521 TheSyntax..........ooiiiiiiiiiiiiiieie e 105
5.2.2 The Operational Semantics 106
5.2.3 The Precedence of Probabilistic Choice 108
5.2.4 Graphical representation of pCSP processes 108
5.2.5 Testing PCSP Processesoouvuiuuiiiieeneenn.. 109
5.3 CountereXamplesovvvniine i e 112
5.4 MustVersus May Testing i, 116
5.5 Forward and Failure Simulation. 118
5.5.1 The Simulation Preorders 120
5.5.2 The Simulation Preorders are Precongruences 125
5.5.3 Simulations Are Sound for Testing Preorders 127
56 AModalLogic..... ..o 133
5.7 Characteristic Testsot e 135
5.8 Equational Theories, 137
5.9 Inequational Theories 138
5,10 COMPIELEINCES ¢ 505 5 15w w16 i 655 878 8 0 65 o 66505 80 s @ 8w s 8 H ¥ 47085 586 140
5.11 Bibliographic Notesc.iuiiiiiiiiiiiiiiiiiiiieinns 143
5.11.1 Probabilistic Equivalences 144
5.11.2 Probabilistic Simulations 145

R O ICES « ot vttt e e e e e 146

Contents
6 Testing Finitary Probabilistic Processes
6.1 Introduction
6.2 TheLanguage rpCSP it
6.3 A General Definition of Weak Derivations
6.3:1 Lifting Relations < «zuin:wisinsimessmsnioninissnissss
6.3.2 Weak TranSitionsS.ovuuriii et iiieinn
6.3.3 Properties of Weak Transitions
6.4 Testing rPCSP Processeso.vvviteii i
6.4.1 Testing with Extremal Derivatives
6.4.2 Comparison with Resolution-Based Testing
6.5 Generating Weak Derivatives in a Finitary pLTS
6.5.1 Finite Generabilityc.iiiiiiiiiiiiiiia..
6.5.2 RealisingPayoffs,
6.5.3 CONnSEqUENCESiiiiiuiiiiiinn.
6.6 The Failure Simulation Preorder
6.6.1 Two Equivalent Definitions and Their Rationale
6.6.2 A Simple Failure Similarity for Finitary Processes
6.6.3 Precongruence.uuuiiiiiiiiiniiiiiiiaaa
6.6.4 Soundness
6.7 Failure Simulation is Complete for Must Testing T
6.7.1 Inductive Characterisationouuuuuunnnn..
6.7.2 The Modal Logic i,
6.7.3 Characteristic Tests for Formulae
6.8 Simulations and May Testingovviiiviiiieneenna...
6:8.1 Soundness . ::iiuiwsniswinininiiii vt i seniasmnena
6.8.2 Completenessoiuiiiiiiiii
6.9 Real-Reward Testing ...t
6.10 SUMMATY < 0o vwswammen-mimssmsaeanemsmensss o ussssaess
REFEIENCES : i v vivvvsaisnisimsnsmssm s ins snsmsasinsssnesissssimie
7 Weak Probabilistic Bisimulation
7.1 IntroducCtiont e
7.2 A Simple Bisimulation il
7.3 Compositionality
7.4 Reduction Barbed Congruencecciiiiiiiiaian..
7.5 Bibliographic Notes i i
References . ..ot

iii

149
149
152
153
154
159
162
167
168
172
175
176
181
186
191
192
196
198
205
206
207
211
213
219
220
222
223
229
230

233
233
234
238
240
244
244

e, 77258 BEPDFIE Ui Al : www. ertongbook. com

Chapter 1
Introduction

Abstract This introduction briefly reviews the history of probabilistic concurrency
theory and three approaches to the semantics of concurrent systems: denotational,
axiomatic and operational. This book focuses on the last one and more specifically
on (bi)simulation semantics and testing semantics. The second section surveys the
contents and main results for other chapters of the book.

Keywords Probabilistic concurrency theory - Semantics - Bisimulation - Testing

1.1 Background

Computer science aims to explain in a rigorous way how computational systems
should behave, and then to design them so that they do behave as expected. Nowa-
days the notion of computational systems includes not only sequential systems but
also concurrent systems. The attention of computer scientists goes beyond single
programs in free-standing computers. For example, computer networks, particles
in physics and even proteins in biology can all be considered as concurrent sys-
tems. Some classical mathematical models (e.g. the A-calculus [1]) are successful
for describing sequential systems, but they turn out to be insufficient for reasoning
about concurrent systems, because what is more important now is how different
components of a system interact with each other rather than their input—output
behaviour.

In the 1980s process calculi (sometimes also called process algebras), notably
calculus of communicating systems (CCS) [2], communicating sequential processes
(CSP) [3] and algebra of communicating processes (ACP) [4, 5], were proposed for
describing and analysing concurrent systems. All of them were designed around the
central idea of interaction between processes. In those formalisms, complex systems
are built from simple subcomponents, using a small set of primitive operators such
as prefix, nondeterministic choice, restriction, parallel composition and recursion.
Those traditional process calculi were designed to specify and verify qualitative
behaviour of concurrent systems.

Since the 1990s, there has been a trend to study the quantitative behaviour of
concurrent systems. Many probabilistic algorithms have been developed in order to

© Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag
Berlin Heidelberg 2014, Y. Deng, Semantics of Probabilistic Processes,

2 I Introduction

gain efficiency or to solve problems that are otherwise impossible to solve by de-
terministic algorithms. For instance, probabilities are introduced to break symmetry
in distributed coordination problems (e.g. the dining philosophers’ problem, leader
election and consensus problems). Probabilistic modelling has helped to analyse and
reason about the correctness of probabilistic algorithms, to predict system behaviour
based on the calculation of performance characteristics and to represent and quantify
other forms of uncertainty. The study of probabilistic model checking techniques has
been a rich research area.

A great many probabilistic variants of the classical process calculi have also
appeared in the literature. The typical approach is to add probabilities to existing
models and techniques that have already proved successful in the nonprobabilistic
settings. The distinguishing feature of probabilistic process calculi is the presence of
a probabilistic-choice operator, as in the probabilistic extensions of CCS [6, 7], the
probabilistic CSP [8], the probabilistic ACP [9] and the probabilistic asynchronous
mr-calculus [10].

In order to study a programming language or a process calculus, one needs to
assign a consistent meaning to each program or process under consideration. This
meaning is the semantics of the language or calculus. Semantics is essential to verify
or prove that programs behave as intended. Generally speaking, there are three ma-
jor approaches for giving semantics to a programming language. The denotational
approach [11] seeks a valuation function that maps a program to its mathematical
meaning. This approach has been very successful in modelling many sequential lan-
guages; programs are interpreted as functions from the domain of input values to the
domain of output values. However, the nature of interaction is much more complex
than a mapping from inputs to outputs, and so far the denotational interpretation of
concurrent programs has not been as satisfactory as the denotational treatment of
sequential programs.

The axiomatic approach [12, 13] aims at understanding a language through a few
axioms and inference rules that help to reason about the properties of programs.
It offers an elegant way of gaining insight into the nature of the operators and the
equivalences involved. For example, the difference between two notions of program
equivalence may be characterised by a few axioms, particularly if adding these
axioms to a complete system for one equivalence gives a complete system for the
other equivalence. However, it is often difficult and even impossible to achieve a
fully complete axiomatic semantics if the language in question is beyond a certain
expressiveness.

The operational approach has been shown to be very useful for giving seman-
tics of concurrent systems. The behaviour of a process is specified by its structural
operational semantics [14], described via a set of labelled transition rules induc-
tively defined on the structure of a term. In this way each process corresponds to a
labelled transition graph. The shortcoming of operational semantics is that it is too
concrete, because a transition graph may contain many states that intuitively should
be identified. Thus, a great number of equivalences have been proposed, and dif-
ferent transition graphs are compared modulo some equivalence relations. Usually

1.2 Synopsis 3

there is no agreement on which is the best equivalence relation; in formal verifica-
tion different equivalences might be suitable for different applications. Sometimes
an equivalence is induced by a preorder relation, by taking the intersection of the
preorder with its inverse relation, instead of being directly defined.

Among the various equivalences, bisimilarity [2, 15] is one of the most impor-
tant ones as it admits beautiful characterisations in terms of fixed points, modal
logics, coalgebras, pseudometrics, games, decision algorithms, etc. In this book
we will characterise bisimilarity for probabilistic processes from metric, logical and
algorithmic perspectives.

Preorders can be used to formalise a “better than™ relation between programs
or processes, one that has its origins in the original work assigning meanings to
programs and associating a logic with those meanings [12, 13]. Usually that relation
is expressed in two different ways: either to provide a witness for the relation or to
provide a testing context to make obvious that one program is actually not better than
another.

Two important kinds of preorders are testing preorders [16, 17] and simulation
preorders. They give rise to testing semantics and simulation semantics, respectively.
In a testing semantics, two processes can be compared by experimenting with a class
of tests. Process P is deemed “better” than process Q if the former passes every test
that the latter can pass. In contrast, to show that P is not “better” than Q it suffices
to find a test that Q can pass but P cannot. In a simulation semantics, process P can
simulate Q if Q performs an action and evolves into Q' then P is able to exhibit
the same action and evolve into P’ such that P’ can simulate Q' in the next round
of the simulation game. Simulation is coinductively defined and comes along with a
proof principle called coinduction: to show that two processes are related it suffices
to exhibit a simulation relation containing a pair consisting of the two processes.
In the nonprobabilistic setting, simulation semantics is in general finer than testing
semantics in that it can distinguish more processes. However, in this book we will
see that for a large class of probabilistic processes, the gap between simulation and
testing semantics disappears. Therefore, in this case we have a semantics where both
negative and positive results can easily be proved: to show that two processes are not
related in the semantics we just give a witness test, while to show that two processes
are related we construct a relation and argue that it is a simulation relation.

1.2 Synopsis

The remainder of the book is organised as follows. Chapter 2 collects some funda-
mental concepts and theorems in a few mathematical subjects such as lattice theory,
topology and linear programming. They are briefly reviewed and meant to be used
as references for later chapters. Most of the theorems are classic results, and thus
are stated without proofs as they can be easily found in many standard textbooks in
mathematics. It is not necessary to go through the whole chapter; readers can refer
to relevant parts of this chapter when it is mentioned elsewhere in the book.

4 1 Introduction

Chapter 3 introduces an operational model of probabilistic systems called
probabilistic labelled transition systems. In this model, a state might make a non-
deterministic choice among a set of available actions. Once an action is taken, the
state evolves into a distribution over successor states. Then in order to compare
the behaviour of two states, we need to know how to compare two distributions.
There is a nice lifting operation that turns a relation between states into a relation
between distributions. This operation is closely related to the Kantorovich metric
in mathematics and the network flow problem in optimisation theory. We give an
elementary account of the lifting operation because it entails a neat notion of prob-
abilistic bisimulation that can be characterised by behavioural pseudometrics and
decided by polynomial algorithms over finitary systems. We also provide modal char-
acterisations of the probabilistic bisimulation in terms of probabilistic extensions of
the Hennessy—Milner logic and the modal mu-calculus.

Starting from Chap. 4 we investigate the testing semantics of probabilistic pro-
cesses. We first set up a general testing framework that can be instantiated into a
vector-based testing or scalar testing approach, depending on the number of actions
used to indicate success states. A fundamental theorem is that for finitary systems
the two approaches are equally powerful. In order to prove this result we make use
of a notion of reward testing as a stepping stone. The separation hyperplane theorem
from discrete geometry plays an important role in the proof.

Chapter 5 investigates the connection between testing and simulation semantics.
For finite processes, i.e. processes that correspond to probabilistic labelled transition
systems with finite tree structures, testing semantics is not only sound but also com-
plete for simulation semantics. More specifically, may testing preorder coincides
with simulation preorder and must testing preorder coincides with failure simula-
tion preorder. Therefore, unlike the traditional (nonprobabilistic) setting, here there
is no gap between testing and simulation semantics. To prove this result we make
use of logical characterisations of testing preorders. For example, each state s has
a characteristic formula ¢, in the sense that another state ¢ can simulate s if and
only if ¢ satisfies ¢. We can then turn this formula ¢ into a characteristic test 7 so
that if 7 is not related to s via the may testing preorder then 7y is a witness test that
distinguishes ¢ from s. Similarly for the case of failure simulation and must testing.
We also give a complete axiom system for the testing preorders in the finite fragment
of a probabilistic CSP. This chapter paves the way for the next chapter.

In Chap. 6 we extend the results in the last chapter from finite processes to finitary
processes, i.e. processes that correspond to probabilistic labelled transition systems
that are finite-state and finitely branching possibly with loops. The soundness and
completeness proofs inherit the general schemata from the last chapter. However, the
technicalities are much more subtle and more interesting. For example, we make a
significant use of subdistributions. A key topological property is that from any given
subdistribution, the set of subdistributions reachable from it by weak transitions can
be finitely generated. The proof is highly nontrivial and involves techniques from
Markov decision processes such as rewards and static policies. This result enables us
to approximate coinductively defined relations by stratified inductive relations. As a

References 5

consequence, if two processes behave differently we can tell them apart by a finite
test.

We also introduce a notion of real-reward testing that allows for negative rewards.
[t turns out that real-reward may preorder is the inverse of real-reward must preorder,
and vice versa. More interestingly, for finitary convergent processes, real-reward
must testing preorder coincides with nonnegative-reward testing preorder.

In Chap. 7 we introduce a notion of weak probabilistic bisimulation simply by
taking the symmetric form of the simulation preorder given in Chap. 6. It provides a
sound and complete proof methodology for an extensional behavioural equivalence,
a probabilistic variant of the traditional reduction barbed congruence well known in
concurrency theory.

References

[1] Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam
(1984)

[2] Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)

[3] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)

[4] Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf. Comput. 60,
109-137 (1984)

[5] Baeten, J.C.M., Weijland, W.P.: Process Algebra, Cambridge Tracts in Theoretical Computer
Science, vol. 18. Cambridge University Press, Cambridge (1990)

[6] Giacalone, A., Jou, C.C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent sys-
tems. Proceedings of IFIP TC2 Working Conference on Programming Concepts and Methods
(1990)

[7] Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities.
Proceedings of IEEE Real-Time Systems Symposium. [IEEE Computer Society Press, 278-287
(1990)

[8] Lowe, G.: Probabilities and priorities in timed CSP. Ph.D. Thesis, Oxford (1991)

[9] Andova, S.: Process algebra with probabilistic choice. Tech. Rep. CSR 99-12, Eindhoven
University of Technology (1999)

[10]Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous pi-calculus. Tech. Rep., INRIA
Futurs and LIX (2004)

[11] Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages. Technical
Monograph PRG-6, Oxford University Computing Laboratory (1971)

[12] Floyd, R.W.: Assigning meanings to programs. Proc. Am. Math. Soc. Symp. Appl. Math. 19,
19-31 (1967)

[13] Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576~
580 (1969)

[14] Plotkin, G.: The origins of structural operational semantics.] Log Algebraic Program 60-61,
3-15(2004)

[15] Park, D.: Concurrency and automata on infinite sequences. Proceedings of the 5th GI-
Conference on Theoretical Computer Science, Lecture Notes in Computer Science, vol. 104,
Springer, 167-183 (1981)

[16] De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput. Sci. 34,
83-133 (1984)

[17] Hennessy, M.: Algebraic Theory of Processes. The MIT Press, Cambridge (1988)

e, 77258 BEPDFIE Ui Al : www. ertongbook. com

