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Preface

Probabilistic concurrency theory aims to specify and analyse quantitative behaviour
of concurrent systems, which necessarily builds on solid semantic foundations of
probabilistic processes. This book adopts an operational approach to describing the
behaviour of nondeterministic and probabilistic processes, and that the semantic
comparison of different systems is based on appropriate behavioural relations such
as bisimulation equivalence and testing preorders.

It mainly consists of two parts. The first part provides an elementary account of
bisimulation semantics for probabilistic processes from metric, logical and algorith-
mic perspectives. The second part sets up a general testing framework and specialises
it to probabilistic processes with nondeterministic behaviour. The resulting testing
semantics is treated in depth. A few variants of it are shown to coincide, and they
can be characterised in terms of modal logics and coinductively defined simulation
relations. Although in the traditional (nonprobabilistic) setting, simulation semantics
is in general finer than testing semantics because it distinguishes more processes for
a large class of probabilistic processes, the gap between simulation and testing se-
mantics disappears. Therefore, in this case, we have a semantics where both negative
and positive results can be easily proved: to show that two processes are not related
in the semantics, we just give a witness test, and to prove that two processes are
related, we only need to establish a simulation relation.

While most of the results have been announced before, they are spread over several
papers in the period from 2007 to 2014, and sometimes with different terminology
and notation. This prevents us from having a comprehensive understanding of the
bisimulation and testing semantics of probabilistic processes. In order to improve
the situation, the current work brings all the related concepts and proof techniques
to form a coherent and self-contained text.

Besides presenting the recent research advances in probabilistic concurrency the-
ory, the book exemplifies the use of many mathematical techniques to solve problems
in Computer Science, which is intended to be accessible to postgraduate students in
Computer Science and Mathematics. It can also be used by researchers and practi-
tioners either for advanced study or for technical reference. The reader is assumed to
have some basic knowledge in discrete mathematics. Familiarity with real analysis
is not a prerequisite, but would be helpful.
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Most of the work reported in this book was carried out during the last few years
with a number of colleagues. The testing semantics for probabilistic processes was
developed in conjunction with Rob van Glabbeek, Matthew Hennessy, Carroll Mor-
gan and Chenyi Zhang. The various characterisations of probabilistic bisimulation
in Chap. 3 are based on joint work with Wenjie Du.

The BASICS laboratory at Shanghai Jiao Tong University has offered a creative
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Yuxi Fu and all other members of the laboratory. Thanks go also to Barry Jay, Matthew
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Chapter 1
Introduction

Abstract This introduction briefly reviews the history of probabilistic concurrency
theory and three approaches to the semantics of concurrent systems: denotational,
axiomatic and operational. This book focuses on the last one and more specifically
on (bi)simulation semantics and testing semantics. The second section surveys the
contents and main results for other chapters of the book.

Keywords Probabilistic concurrency theory - Semantics - Bisimulation - Testing

1.1 Background

Computer science aims to explain in a rigorous way how computational systems
should behave, and then to design them so that they do behave as expected. Nowa-
days the notion of computational systems includes not only sequential systems but
also concurrent systems. The attention of computer scientists goes beyond single
programs in free-standing computers. For example, computer networks, particles
in physics and even proteins in biology can all be considered as concurrent sys-
tems. Some classical mathematical models (e.g. the A-calculus [1]) are successful
for describing sequential systems, but they turn out to be insufficient for reasoning
about concurrent systems, because what is more important now is how different
components of a system interact with each other rather than their input—output
behaviour.

In the 1980s process calculi (sometimes also called process algebras), notably
calculus of communicating systems (CCS) [2], communicating sequential processes
(CSP) [3] and algebra of communicating processes (ACP) [4, 5], were proposed for
describing and analysing concurrent systems. All of them were designed around the
central idea of interaction between processes. In those formalisms, complex systems
are built from simple subcomponents, using a small set of primitive operators such
as prefix, nondeterministic choice, restriction, parallel composition and recursion.
Those traditional process calculi were designed to specify and verify qualitative
behaviour of concurrent systems.

Since the 1990s, there has been a trend to study the quantitative behaviour of
concurrent systems. Many probabilistic algorithms have been developed in order to

© Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag
Berlin Heidelberg 2014, Y. Deng, Semantics of Probabilistic Processes,



2 I Introduction

gain efficiency or to solve problems that are otherwise impossible to solve by de-
terministic algorithms. For instance, probabilities are introduced to break symmetry
in distributed coordination problems (e.g. the dining philosophers’ problem, leader
election and consensus problems). Probabilistic modelling has helped to analyse and
reason about the correctness of probabilistic algorithms, to predict system behaviour
based on the calculation of performance characteristics and to represent and quantify
other forms of uncertainty. The study of probabilistic model checking techniques has
been a rich research area.

A great many probabilistic variants of the classical process calculi have also
appeared in the literature. The typical approach is to add probabilities to existing
models and techniques that have already proved successful in the nonprobabilistic
settings. The distinguishing feature of probabilistic process calculi is the presence of
a probabilistic-choice operator, as in the probabilistic extensions of CCS [6, 7], the
probabilistic CSP [8], the probabilistic ACP [9] and the probabilistic asynchronous
mr-calculus [10].

In order to study a programming language or a process calculus, one needs to
assign a consistent meaning to each program or process under consideration. This
meaning is the semantics of the language or calculus. Semantics is essential to verify
or prove that programs behave as intended. Generally speaking, there are three ma-
jor approaches for giving semantics to a programming language. The denotational
approach [11] seeks a valuation function that maps a program to its mathematical
meaning. This approach has been very successful in modelling many sequential lan-
guages; programs are interpreted as functions from the domain of input values to the
domain of output values. However, the nature of interaction is much more complex
than a mapping from inputs to outputs, and so far the denotational interpretation of
concurrent programs has not been as satisfactory as the denotational treatment of
sequential programs.

The axiomatic approach [12, 13] aims at understanding a language through a few
axioms and inference rules that help to reason about the properties of programs.
It offers an elegant way of gaining insight into the nature of the operators and the
equivalences involved. For example, the difference between two notions of program
equivalence may be characterised by a few axioms, particularly if adding these
axioms to a complete system for one equivalence gives a complete system for the
other equivalence. However, it is often difficult and even impossible to achieve a
fully complete axiomatic semantics if the language in question is beyond a certain
expressiveness.

The operational approach has been shown to be very useful for giving seman-
tics of concurrent systems. The behaviour of a process is specified by its structural
operational semantics [14], described via a set of labelled transition rules induc-
tively defined on the structure of a term. In this way each process corresponds to a
labelled transition graph. The shortcoming of operational semantics is that it is too
concrete, because a transition graph may contain many states that intuitively should
be identified. Thus, a great number of equivalences have been proposed, and dif-
ferent transition graphs are compared modulo some equivalence relations. Usually
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there is no agreement on which is the best equivalence relation; in formal verifica-
tion different equivalences might be suitable for different applications. Sometimes
an equivalence is induced by a preorder relation, by taking the intersection of the
preorder with its inverse relation, instead of being directly defined.

Among the various equivalences, bisimilarity [2, 15] is one of the most impor-
tant ones as it admits beautiful characterisations in terms of fixed points, modal
logics, coalgebras, pseudometrics, games, decision algorithms, etc. In this book
we will characterise bisimilarity for probabilistic processes from metric, logical and
algorithmic perspectives.

Preorders can be used to formalise a “better than™ relation between programs
or processes, one that has its origins in the original work assigning meanings to
programs and associating a logic with those meanings [12, 13]. Usually that relation
is expressed in two different ways: either to provide a witness for the relation or to
provide a testing context to make obvious that one program is actually not better than
another.

Two important kinds of preorders are testing preorders [16, 17] and simulation
preorders. They give rise to testing semantics and simulation semantics, respectively.
In a testing semantics, two processes can be compared by experimenting with a class
of tests. Process P is deemed “better” than process Q if the former passes every test
that the latter can pass. In contrast, to show that P is not “better” than Q it suffices
to find a test that Q can pass but P cannot. In a simulation semantics, process P can
simulate Q if Q performs an action and evolves into Q' then P is able to exhibit
the same action and evolve into P’ such that P’ can simulate Q' in the next round
of the simulation game. Simulation is coinductively defined and comes along with a
proof principle called coinduction: to show that two processes are related it suffices
to exhibit a simulation relation containing a pair consisting of the two processes.
In the nonprobabilistic setting, simulation semantics is in general finer than testing
semantics in that it can distinguish more processes. However, in this book we will
see that for a large class of probabilistic processes, the gap between simulation and
testing semantics disappears. Therefore, in this case we have a semantics where both
negative and positive results can easily be proved: to show that two processes are not
related in the semantics we just give a witness test, while to show that two processes
are related we construct a relation and argue that it is a simulation relation.

1.2 Synopsis

The remainder of the book is organised as follows. Chapter 2 collects some funda-
mental concepts and theorems in a few mathematical subjects such as lattice theory,
topology and linear programming. They are briefly reviewed and meant to be used
as references for later chapters. Most of the theorems are classic results, and thus
are stated without proofs as they can be easily found in many standard textbooks in
mathematics. It is not necessary to go through the whole chapter; readers can refer
to relevant parts of this chapter when it is mentioned elsewhere in the book.
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Chapter 3 introduces an operational model of probabilistic systems called
probabilistic labelled transition systems. In this model, a state might make a non-
deterministic choice among a set of available actions. Once an action is taken, the
state evolves into a distribution over successor states. Then in order to compare
the behaviour of two states, we need to know how to compare two distributions.
There is a nice lifting operation that turns a relation between states into a relation
between distributions. This operation is closely related to the Kantorovich metric
in mathematics and the network flow problem in optimisation theory. We give an
elementary account of the lifting operation because it entails a neat notion of prob-
abilistic bisimulation that can be characterised by behavioural pseudometrics and
decided by polynomial algorithms over finitary systems. We also provide modal char-
acterisations of the probabilistic bisimulation in terms of probabilistic extensions of
the Hennessy—Milner logic and the modal mu-calculus.

Starting from Chap. 4 we investigate the testing semantics of probabilistic pro-
cesses. We first set up a general testing framework that can be instantiated into a
vector-based testing or scalar testing approach, depending on the number of actions
used to indicate success states. A fundamental theorem is that for finitary systems
the two approaches are equally powerful. In order to prove this result we make use
of a notion of reward testing as a stepping stone. The separation hyperplane theorem
from discrete geometry plays an important role in the proof.

Chapter 5 investigates the connection between testing and simulation semantics.
For finite processes, i.e. processes that correspond to probabilistic labelled transition
systems with finite tree structures, testing semantics is not only sound but also com-
plete for simulation semantics. More specifically, may testing preorder coincides
with simulation preorder and must testing preorder coincides with failure simula-
tion preorder. Therefore, unlike the traditional (nonprobabilistic) setting, here there
is no gap between testing and simulation semantics. To prove this result we make
use of logical characterisations of testing preorders. For example, each state s has
a characteristic formula ¢, in the sense that another state ¢ can simulate s if and
only if ¢ satisfies ¢. We can then turn this formula ¢ into a characteristic test 7 so
that if 7 is not related to s via the may testing preorder then 7y is a witness test that
distinguishes ¢ from s. Similarly for the case of failure simulation and must testing.
We also give a complete axiom system for the testing preorders in the finite fragment
of a probabilistic CSP. This chapter paves the way for the next chapter.

In Chap. 6 we extend the results in the last chapter from finite processes to finitary
processes, i.e. processes that correspond to probabilistic labelled transition systems
that are finite-state and finitely branching possibly with loops. The soundness and
completeness proofs inherit the general schemata from the last chapter. However, the
technicalities are much more subtle and more interesting. For example, we make a
significant use of subdistributions. A key topological property is that from any given
subdistribution, the set of subdistributions reachable from it by weak transitions can
be finitely generated. The proof is highly nontrivial and involves techniques from
Markov decision processes such as rewards and static policies. This result enables us
to approximate coinductively defined relations by stratified inductive relations. As a
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consequence, if two processes behave differently we can tell them apart by a finite
test.

We also introduce a notion of real-reward testing that allows for negative rewards.
[t turns out that real-reward may preorder is the inverse of real-reward must preorder,
and vice versa. More interestingly, for finitary convergent processes, real-reward
must testing preorder coincides with nonnegative-reward testing preorder.

In Chap. 7 we introduce a notion of weak probabilistic bisimulation simply by
taking the symmetric form of the simulation preorder given in Chap. 6. It provides a
sound and complete proof methodology for an extensional behavioural equivalence,
a probabilistic variant of the traditional reduction barbed congruence well known in
concurrency theory.
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