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Note on the Oxford Classic Text edition

For many years, Bleaney and Bleaney (B&B) provided an excellent
foundation text in the teaching of electricity, magnetism, introductory
electronics, and condensed-matter physics. In preparation for the current
reissuing, I have reread the entire book from cover to cover and found
nothing to change this opinion; B&B remains the most complete book of
its kind. And the erudition of its authors remains very obvious; analogies
with, and connections to, chemistry, engineering, molecular spectroscopy,
atomic physics, geology, telecommunications, and so on are sprinkled
throughout the book.

B&B is in many ways a classic, and in preparing the current edition,
the intention has been to change as little as possible; anything else would
have been akin to sprinkling words like ‘dude’ and ‘dissed’ through Pride
and Prejudice. However, the present reissuing did afford the opportunity
to correct a small number of misprints and to offer clarifications in a few
places that students have found confusing or difficult to follow. Archaic
words such as ‘condenser’ have (perhaps regrettably) been relegated to
the index and replaced in the text by their more modern equivalents.

The earlier editions of B&B were remarkably contemporary books.
Many ‘cutting-edge’ topics, such as the BCS theory of superconductivity,
were introduced shortly after their discovery. Though such chapters still
(in late 2011) constitute good introductory summaries of these subjects,
the only references provided by B&B tended to be lists of early research
papers. This is entirely understandable; at the time of writing, there were
no textbooks on these topics! In such cases, I have introduced a few
references to books that give a more recent overview of the subject. The
only part of the book that has dated in a really obvious fashion is the
chapter on ‘Alternating current measurements’. Here, many of the tech-
niques described have been rendered obsolete by modern digital instru-
ments. This has been pointed out in a footnote, with the rest of the
chapter left unaltered for historical interest.

The most persistent comments on the earlier editions of B&B mainly
concern the index. In an age of instant informational gratification
through the likes of Wikipedia and Google, the rather spare indexing
of earlier editions seems to have become somewhat offputting. In re-
sponse to these requests, the index has been expanded, and the complete
index (to Volumes 1 and 2) is given in both volumes.
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In making the above changes, I have been aided greatly by my former
colleague Geoff Brooker. On most points we agreed. In the more obscure
alterations it was good to have Geoft’s support and extensive background
knowledge. Guy Peskett and David Andrews have also made very useful
suggestions, and numerous others have passed on comments from students,
misprints etc.. I am very grateful for all of this assistance. Nevertheless,
remaining mistakes and inaccuracies are my responsibility, and, in the hope
of further reprints, I would be glad to be informed of them (j.singletonl
@physics.ox.ac.uk).

John Singleton

November 2011

National High Magnetic Field Laboratory
Los Alamos



Preface to the third edition

De manera que acordé, aunque contra mi voluntad, meter segunda vez la pluma en tan
estraria lavor é tan agena de mi facultad, hurtando algunos ratos d mi principal estudio,
con otras horas destinadas para recreacion, puesto que no han de faltar nuevos detractores
a la nueva edicion.

1499 Fernando de Rojas

So I agreed, albeit unwillingly (since there cannot fail to be fresh critics of a new
edition), again to exercise my pen in so strange a labour, and one so foreign to my
ability, stealing some moments from my principal study, together with other hours
destined for recreation.

For the third edition of this textbook the material has been completely revised
and in many parts substantially rewritten. S.I. units are used throughout;
references to c.g.s. units have been almost wholly eliminated, but a short
conversion table is given in Appendix D. The dominance of solid-state devices
in the practical world of electronics is reflected in a major change in the subject
order.

Chapters 1-9 set out the macroscopic theory of electricity and magnetism,
with only minor references to the atomic background, which is discussed in
Chapters 10-17. A simple treatment of lattice vibrations is introduced in
Chapter 10 in considering the dielectric properties of ionic solids. The
discussion of conduction electrons and metals has been expanded into two
chapters, and superconductivity, a topic previously excluded, is the subject of
Chapter 13. Minor changes have been made in the three chapters (14-16) on
magnetism. The discussion of semiconductor theory precedes new chapters on
solid-state devices, but we have endeavoured to present such devices in a
manner which does not presuppose a knowledge in depth of the theory. The
remaining chapters, on amplifiers and oscillators, vacuum tubes, a.c.
measurements, noise, and magnetic resonance, bring together the discussion
of electronics and its applications.

The authors are grateful to many colleagues in Oxford and readers
elsewhere for helpful comments on previous editions which have been
incorporated in the present volume. In particular we are indebted to Dr. G. A.
Brooker for numerous and detailed comments and suggestions; to Drs F. V.
Price and J. W. Hodby, whose reading of new material on electronics in draft
form resulted in substantial improvement of the presentation; to Drs F. N. H.
Robinson and R. A. Stradling for several helpful suggestions; and to Messrs
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C. A. Carpenter and J. Ward for the considerable trouble taken in producing
Fig. 23.3. We are indebted to Professors M. Tinkham and O. V. Lounasmaa
for generously sending us material in advance of publication; and to Professor
L. F. Bates, F.R.S., Drs R. Dupree, and R. A. Stradling for their kindness in
providing the basic diagrams for Figs 15.6, 6.15, and 17.9. We wish to thank
Miss C. H. Bleaney for suggesting the quotation which appears above.

Clarendon Laboratory, B.I. B.
Oxford B. B.
February 1975
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Note added in 1989

The opportunity has been taken of dividing this textbook into two volumes.

Volume 1: Chapters 1 to 9 inclusive, covering the basic theory of electricity and
magnetism.

Volume 2: Chapters 10 to 24 inclusive, covering electrical and magnetic properties of
matter, including semiconductors and their applications in electronics, alternating
current measurements, fluctuations and noise, magnetic resonance.

A number of minor errors have been corrected, and a section (20.8) has been added
on Operational Amplifiers. We wish to thank Dr. F. N. H. Robinson for suggesting
this, and Dr. J. F. Gregg, I. D. Morris, and J. C. Ward for help in its preparation. We
are indebted to Dr. L. V. Morrison of the Royal Greenwich Observatory, Cambridge
(Stellar Reference Frame Group), for the up-to-date plot of the variations in the length
of the day, measured by the caesium clock, that now appears as Fig. 24.12. It is based
on data published by the Bureau de I'Heure, Paris.

B.1. B.
B. B.
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10. Dielectrics

THis chapter is the first of several which approach electric and magnetic
phenomena from an atomic viewpoint. For dielectrics the discussion is
confined to linear phenomena, where the polarization is linearly propor-
tional to the applied field. High-field effects, and effects involving spon-
taneous polarization (ferro- and antiferroelectricity) are excluded.

10.1. Macroscopic quantities in an atomic medium

A dielectric medium consists of an assembly of negatively charged
particles (electrons) and positively charged particles (nuclei). We assume
it to be electrically neutral, the total negative charge being equal to the
total positive charge, and that all the charges are ‘bound’. By this is meant
that in zero electric field each charge occupies its equilibrium position,
from which it may be slightly displaced when an electric field is applied,
but that it is unable to move continuously from place to place: there is no
‘free charge’ and no conduction current.

In electromagnetic theory, a dielectric is a continuous medium which
becomes electrically polarized under the action of an electric field. The
concepts involved are the macroscopic quantities, charge density, and
electric polarization, defined as continuous functions. The charge density
p. is the ratio of an infinitesimal charge to an infinitesimal volume, taken
to the limit as the infinitesimals are reduced to zero. The electric
polarization is similarly defined, with net dipole moment instead of net
charge. These concepts are clearly not immediately applicable to a set of
discontinuous charges, and a method of relating the electrical properties
of such an assembly to the corresponding properties of a continuous
medium is required.

In the electron theory of Lorentz macroscopic quantities such as charge
density and polarization are regarded as averages over loosely defined
volumes which are small on a macroscopic scale but large enough to
contain very many elementary charges. In considering the propagation of
an electromagnetic wave through the medium, such averages must be
taken over regions whose linear dimensions are small compared with the
wavelength. For optical waves (A ~5%x107"m) such dimensions can be
over 100 times the atomic spacing in a solid (~2x 107 m), so that the
number of charges involved in the average may be 10°~10°. Nevertheless
there is a conceptual difficulty. The total charge in anv such volume must
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be an integral multiple of the fundamental unit of charge, but if the
boundaries are moved to include or exclude just one electronic charge, an
apparent change in the charge density is obtained which is clearly not
meaningful. (In fact one electronic charge of 1:6x107°C in a cube of
dimensions 107" m gives a charge density of 160 C m™>, which is enorm-
ous compared with any charge density realizable in practice.) This diffi-
culty is overcome by taking averages over a large number of such volumes
of random size, so that fluctuations in volumes of size small compared
with A® are smoothed out.

The averages which we require may be defined more precisely by the
use of a three-dimensional Fourier analysis to represent the distribution
of charge in space (Robinson 1973). The method may be illustrated by
considering a simple one-dimensional example: an infinite line of charges
q placed at regular intervals a,, for example at the points 0, +a,, and all
integral multiples of +a.. The charge density, expressed as a Fourier
series, is easily shown to be :

¢ 2 ~— 2mnx
e = — + — 10.1
P a0+a02(:os< E ) (10.1)

Clearly the average charge density is q/ao, and the spatial repetition rates
of the oscillating terms are a;' and multiples thereof. In any length [
reaching from xo—3! to xo+3l the total charge is found by integration
over this interval, and the corresponding charge density is

1 gl 2q «— /ZOH/? (27rnx)
- dr = — + — cos dz
l/p aol aol; xo—1/2 ao

q = 2q 2mnTo mnl
= —+ — co8 ( ) sin (—) (10.2)
ag  — mnl ag ag

For arbitrary values of x¢ and / the oscillatory terms are as often positive as
negative, and the macroscopic charge density is g/ag. The Lorentz approach
is in fact equivalent to taking an average over ranges of values of x( and of
! which are large compared with ay.

This one-dimensional example illustrates the result that with a regular
array of charges, as in the lattice of a crystal, Fourier analysis produces a
constant component (which is the macroscopic average we require),
together with components which repeat in space at the same rate as the
lattice or higher. Such oscillating components cause strong scattering, the
lattice acting as a three-dimensional diffraction grating for wavelengths
simply related to the lattice spacing, that is, X-rays of wavelengths
~2x107" m. In contrast, much longer wavelengths are propagated freely
through the lattice and can be treated using the macroscopic theory of
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Chapter 8. Imperfections on an atomic scale, such as displacements of
lattice ions under the action of thermal vibrations or the irregularities of
molecular poSition in a liquid, do not much affect this result. This is true
even in a gas, since at S.T.P. the average intermolecular distance
(~5x%107° m) is still small compared with optical wavelengths. The ran-
domness in the molecular spacing will cause some scattering, but this is
small for optical waves and quite negligible for radio waves.

10.2. Macroscopic polarization and the local field

Experimentally no net charge on an atom or molecule has ever been
detected, and Dylla and King (1973) have shown that the fractional
difference in the numerical values of the charge on electron and proton is
less than 1-3x107%", However, application of an electric field displaces the
positive charges in the direction of the field and the negative charges in
the opposite direction, so that every substance acquires an ‘induced’
electric dipole moment. It is usual to distinguish between two effects: (1)
an ‘electronic contribution’, arising from the displacement of electrons
relative to positively charged nuclei; (2) an ‘ionic contribution’, arising
from the displacement of heavy positive ions relative to heavy negative
ions, which occurs in molecules and in ionic solids containing ions of
different charge.

In addition to induced moments there may be permanent electric
dipole moments. In an atom or monatomic ion the distribution of charge
is symmetric about the centre and, as discussed in § 2.3, no permanent
electric dipole moment can be present. Some molecules also fall into this
symmetry classification; simple examples are the homonuclear diatomic
molecules such as H,, N,, O, and symmetric linear polyatomic molecules
such as CO;, which has the structure O—C—O. Such molecules are
known as ‘non-polar molecules’. Molecules which do not satisfy this
symmetry requirement normally possess permanent electric dipole mo-
ments, and are called ‘polar molecules’.

For a finite body, the macroscopic electric dipole moment is the vector
sum of the individual dipole moments. We may distinguish between three
types of contributions.

(1) Each atom, ion, or non-polar molecule has zero dipole moment in
zero field, but acquires a dipole moment when a field is applied,;
such moments are known as ‘induced dipoles’.

(2) When polar molecules are present, their permanent dipole mo-
ments are completely randomly oriented in zero field, so that the
vector sum is zero, at any rate on a time average; in the presence of
a field, orientations in which the dipole moment is parallel to the
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field have a lower energy and so are statistically more favourable,
giving a resultant dipole moment in the direction of the field.

(3) In an ionic lattice, the positive ions are displaced in the direction of
an applied field while the negative ions are displaced in the oppo-
site direction, giving a resultant dipole moment to the whole body.

The techniques of Fourier analysis that were illustrated above for the
charge density can also be applied to the components of the dipole
moments, and under similar conditions yield a macroscopic dipole mo-
ment per unit volume. This is the polarization P, which appears in the
macroscopic equations (cf. § 1.5)

D =¢eE+P = ¢.60E (10.3)
and
P=(e—1)eE. (10.4)

In performing the Fourier analysis, we use the dipole components given
by eqns (2.25). For neutral atoms and neutral molecules the result is
independent of the origin of r in the equation p= | p.r dr, as pointed out
in § 2.3. For charged ions this is not true; for the induced dipoles arising
from the displacement of the electrons relative to the nucleus we must
measure r from the nucleus, while if the ion is bodily displaced in the
lattice r must be measured from the point occupied by the ion when no
electric field is applied.

To evaluate the dipole moment, we must calculate the effect of an
electric field on an electron bound in a molecule. This is a quantum-
mechanical problem, whose solution is only approximate except in a
simple case such as the hydrogen atom, and which we shall not pursue
further. Instead we regard the medium as composed of atoms, ions, or
molecules which acquire an induced dipole moment p; under the action of
the electric field, and which sometimes possess also a permanent dipole
moment. The size of the induced dipole p; is determined by the mag-
nitude of the field E,.. acting on the particle; we can write

Pi= aElocnl, (10.5)

where a is a quantity known as the ‘polarizability’ of the atom, ion, or
molecule. At ordinary field strengths p; is linearly proportional to Ee,
and «a is therefore a constant, independent of field strength. The polariza-
tion arising from the induced dipoles, if all are identical and the number
per unit volume is no, is

P= nan.oc.l, (10.6)

where we have assumed that each induced dipole p; is parallel t0 Ejoca as
would be the case in the absence of any anisotropy.



