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PREFACE

Fourier analysis is used to describe the behavior of a remarkably wide range of
scientific and engineering phenomena. Since its introduction by Daniel
Bernoulli over two centuries ago, it has been studied and developed to the
point where it is perhaps the most useful form of mathematical analysis
available today.

In this text, I have divided Fourier analysis into three analogous topics.
First is the Fourier series—a mapping that converts a (periodic) function to a
sequence of Fourier series coefficients. Next is the Fourier transform which
maps a function to another function. Finally, we have the discrete Fourier
transform which maps one sequence to another. Both the Fourier series and
Fourier transform mappings have wide application in the study of physical
phenomena. On the other hand, the utility of the discrete Fourier transform
lies in the fact that it can be used to digitally calculate the other two mappings.

My intention, when designing this text, was to produce a work that would
enable the reader to understand the concept and properties of the Fourier
mappings and then apply this knowledge to the analysis of real scientific and
engineering problems. To accomplish this goal, I have divided the text into two
portions. The first, consisting of Chapters 1-5, presents the definition and
properties of the Fourier series, Fourier transform, and discrete Fourier
transform. Since this is a text on applications, the presentation in this first
section does not dwell upon the questions of existence and reciprocity of the
mappings but rather the emphasis is placed on how their properties can be
used to simplify their calculation and manipulation. Chapters 6—11 constitute
the second portion which builds upon the material presented in the first
portion and demonstrates various physical applications of Fourier analysis.

In very simple terms, Fourier analysis is the study of how general functions
can be decomposed into linear combinations of the trigonometric sine and
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viii PREFACE

cosine functions. Chapter 1 discusses this concept of frequency content of a
function from both heuristic and mathematical points of view.

Chapters 2, 3, and 4 discuss the Fourier series, Fourier transform, and
discrete Fourier transform, respectively. In each of these chapters the basic
definition is presented and then the various properties are discussed. The
presentations are presented in an analogous fashion so that the similarities of
the mappings are highlighted.

Chapter 5 presents a discussion of the digital calculation of both the Fourier
series and Fourier transform by using the discrete Fourier transform. In this
chapter, sampling theory is discussed from a practical point of view.

Chapter 6 discusses the concepts of the impulse response and transfer
function of a system. These concepts from systems theory are used throughout
the remaining applications chapters.

The remaining five chapters deal directly with applications to specific fields.
Specifically, Chapter 7 discusses application of Fourier analysis to both
mechanical and electrical systems as well as the one-dimensional wave equa-
tion. Chapter 8 deals with the physics of optical wave propagation and optical
systems engineering. Chapter 9 deals with the accuracy of numerical analysis
algorithms from a frequency domain point of view. Chapter 10 discusses
applications of Fourier analysis to the solution of the heat, or diffusion,
equation. Chapter 11 discusses basic applications of Fourier analysis to statis-
tics and probability theory as well as a brief presentation of stochastic systems
analysis.

This text is based upon a portion of the material that was used as course
notes at the University of California’s Lawrence Livermore National Labora-
tory. This course was offered as part of their continuing education program. I
am very grateful to several of those students whose comments and suggestions
were very helpful in developing the new manuscript. In particular, my thanks
to B. J. McKinley, Karena McKinley, Henry Chau, and Dr. Jeff Richardson
for their fine efforts. Very special thanks must go to Dr. Gary Sommargren, a
good friend and colleague, for his expert advice, criticism, and encouragement
throughout the development of this text. Finally, deepest gratitude to my wife
Sue who gave up many evenings to help type and proof this manuscript.

H. JosepH WEAVER
Livermore, California
May 1983
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CHAPTER

THE CONCEPT OF
FREQUENCY CONTENT

Fourier analysis, or frequency analysis, in the simplest sense is the study of the
effects of adding together sine and cosine functions. This type of analysis has
become an essential tool in the study of a remarkably large number of
engineering and scientific problems. Daniel Bernoulli, while studying vibra-
tions of a string in the 1750s, first suggested that a continuous function over
the interval (0, ) could be represented by an infinite series consisting only of
sine functions. This suggestion was based on his physical intuition and was
severely attacked by mathematicians of the day. Roughly 70 years later J. B.
Fourier reopened the controversy while studying heat transfer. He argued,
more formally, that a function continuous on an interval (—, 7) could be
represented as a linear combination of both sine and cosine functions. Still his
conjecture was not readily accepted, and the question went unresolved for
many years.

The purpose of this chapter is to present the concept of frequency content,
or to say it another way, to study the effect of a linear combination of sine and
cosine functions. To do this, we present both the definition and functional
behavior of these basic building blocks (sine and cosine functions). At first, our
approach is rather heuristic and the emphasis placed on the trigonometric
derivation of these functions. From this derivation their functional behavior is
demonstrated. Simple examples are used to illustrate how a combination of
these functions is dependent upon both the amplitude and frequency of the
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2 THE CONCEPT OF FREQUENCY CONTENT

individual trigonometric function components. Once the “physical” concepts
have been presented, we present a concise mathematical definition of frequency
content. Finally, we show how complex variable theory can be used to enhance
our understanding and appreciation of the concept of frequency content.

TRIGONOMETRIC SINE AND COSINE FUNCTIONS

The fundamental building blocks of Fourier analysis are the sine and cosine
trigonometric functions. Trigonometry literally means ““the measurement of
three angles” and was first used to study the relationship between the sides and
angles of a triangle. Today, however, the trigonometric functions themselves
have become central objects of study in the modern mathematical field called
analysis. The mathematician uses sines and cosines to study other functions,
whereas the engineer and scientist use them to study certain periodic phenome-
non. Although the sine and cosine functions can be introduced from either
point of view, we approach the subject from the classical or “triangle solving”
method. This serves to present the more physical side of these functions from
which their periodic nature and analytical properties can be demonstrated. The
right triangle shown in Figure 1.1 will be our starting point. The relations sine,

v
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FIGURE 1.1. Trigonometric relations on a right triangle.



GENERALIZED SINE AND COSINE FUNCTIONS 3

cosine, and tangent are defined on this triangle as follows:

(1.1a) sin0=%,
(1.1b) c050=%,

(0]
(1.1¢c) tan0=g.

Equations (1.1a)-(1.1c) are our basic definitions of the sine and cosine
relations. These relations can be considered to give the measure of an angle in
terms of the sides of a right triangle. The sine and cosine functions are
dimensionless. The dimensions of the angle # (which is discussed shortly) may
be radians, gradians, degrees, or any other convenient measure one cares to
define. Usually associated with trigonometry and the study of triangles are the
units of degrees. However, we prefer radians. Let us now add to our repertoire
the result of the well-known Pythagorean theorem which states

(1.2) H? = 4> + O™

This equation can be used in conjunction with Equations (1.1) to derive many

familiar results. For example, if we first solve Equations (1.1) for O and 4 in

terms of sine and cosine and then square the resulting equations we obtain
0? = H’sin’d,

(1.3) . -

A = H*cos“0.

Substitution of these equations into Equation (1.2) and dividing by H? yields
(1.4) sin’f + cos?0 = 1.

As a second example, let us divide Equation (1.1a) by (1.1b) to arrive at
another basic equation:

sinf
(1.5) tanﬂ—cosa.

Many other well-known results such as the law of sines and the law of
cosines, as well as the sine and cosine of sums of angles can also be derived by
similar trivial moves.

GENERALIZED SINE AND COSINE FUNCTIONS

When “triangle solving,” it is really never necessary to consider angles greater
than 90°. However, it is useful to generalize the sine and cosine functions to



4 THE CONCEPT OF FREQUENCY CONTENT

accommodate angles greater than this. The construction shown in Figure 1.2a
helps to illustrate this generalization. Shown in the figure is a circle (of radius
R) divided into four sections or quadrants. These quadrants are labeled from I
to IV in the counterclockwise direction. The line drawn, at an angle 6, from the
origin (center of circle) to the circumference is known as the radius vector. The
angle @ is measured from the horizontal axis to the radius vector and is
considered positive when swept in a counterclockwise direction.

We now construct the right triangle by dropping a line from the tip of the
radius vector to the horizontal axis to form the opposite side (O) of the
triangle. The value or “length” of this side is measured from the horizontal
axis to the tip of the radius vector. A line drawn from the origin to the point of
intersection of the O side and the horizontal axis gives the adjacent (A4) side
and completes the construction of the triangle. Again, the value or “length” of
this side is measured from the origin and depending upon the angle ¢ will be
positive or negative. The generalized sine and cosine functions of the angle 6
are defined exactly as in Equations (1.1) only now we permit O and 4 to take
on negative values. Note that the length of the radius vector is always
considered positive. Depending upon the angle §, we have four possible
locations for the right triangle (in quadrants I through IV). For example,
shown in Figure 1.2b6 is a value of @ that places the triangle in the second

I I
R
0
6
A
11 v
(9)
I |
R
o) 6
~
A
11 IV

( b) FIGURE 1.2. Generalized trigonometric relations.



GENERALIZED SINE AND COSINE FUNCTIONS 5
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FIGURE 1.3. Periodic behavior of trigonometric functions.

quadrant. It is important to note that for these generalized sine and cosine
functions the angle 6 does not necessarily lie between the hypotenuse and the
adjacent side of the triangle but is always measured from the positive horizon-
tal axis to the radius vector in the counterclockwise direction.

The “triangle solving” equations still apply to the triangles regardless of the
quadrant in which they are located. For example, in Figure 1.2b6 the angle
between the hypotenuse and adjacent side is 180° — . Solving this triangle
and comparing the results to the generalized trigonometric functions we obtain

sin(180° — #) = siné,

(1.6)
cos(180° — §) = —cos 6.

Let us now carry this construction one step farther to illustrate the func-
tional behavior of the sine and cosine.” In Figure 1.3 we again use the circle

TFrom here on we drop the term generalized sine and cosine functions and simply refer to them as
the sine and cosine functions.



6 THE CONCEPT OF FREQUENCY CONTENT

construction but now plot O (R sin #) versus 8 on the horizontal graph. This is
a simple construction and is accomplished by graphically projecting the length
of the side O over to the graph for various values of #. This clearly illustrates
the functional behavior of the sine function. A similar construction is shown
for the cosine function in the vertical graph. Motion described by this type of
function is called sinusoidal or simple harmonic motion. As is obvious from
this figure, the sine and cosine functions repeat themselves every 27 radians or
360°, which corresponds to one complete revolution of the radius vector.
Mathematically, we have:

sin( + 27) = sin @,

(1.7)

cos(d + 2m) = cos 6.

DEGREES, RADIANS, AND GRADS

We have been talking about degrees and radians as the measure of an angle
rather casually so far. It is now time to be more specific. The common measure
of the angle is the sexagesimal system in which the circle is divided into 360
basic units or degrees. The degree is divided into 60 minutes which, in turn, is
divided into 60 seconds. A more reasonable measure of an angle is the grad. In
this system the circle is divided into 400 grads or 100 grads per quadrant (this
is an attempt at metrication of the circle). The rotational measure of an angle is
also commonly used. If we consider one rotation of the vector in Figure 1.3 as
our basic unit, then angles can be measured as fractions of a rotation. For
example, 1 rotation is equal to 72°.

Although the degree, grad, and rotation systems are sufficient to measure an
angle for triangle solving, the radial measure is much more useful when
discussing analytical properties of the trigonometric functions. As is well
known, if we were to take the radius of a circle, bend it into an arc, and lay it
along the circumference, it would take 6.28319..., or 27, radial lengths to
completely fit around the circle. Thus we can reasonably ask, “Suppose we
take a fraction of the radius (bend it) and lay it on the circumference as shown
in Figure 1.4; what angle would it span?”

We now have a measure of the angle # in terms of the length of a fraction
(possibly greater than one) of the radius A’B’. In fact, the angle 6 is equal to
the length of the arc AB for a unit circle. This is a most important concept and
is very useful to us in the next section.

DERIVATIVES OF THE SINE AND COSINE FUNCTIONS

In this section we take a look at the derivatives of the sine and cosine
functions. In line with our stated philosophy we use triangles or the classical



