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ALGEBRA

Quadratic Formula
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PREFACE |

Contemporary calculus instructors and students face traditional challenges as well
as new ones that result from changes in the role and practice of mathematics by
scientists and engineers in the world at large. As a consequence, this sixth edition of
our calculus textbook is its most extensive revision since the first edition appeared in
1982.

Two entire chapters of the fifth edition have been replaced in the table
of contents by two new ones; most of the remaining chapters have been exten-
sively rewritten. Nearly 160 of the book’s over 800 worked examples are new for this
edition and the 1850 figures in the text include 250 new computer-generated
graphics. Almost 800 of its 7250 problems are new, and these are augmented by over
330 new conceptual discussion questions that now precede the problem
sets. Moreover, almost 1100 new true/false questions are included in the Study
Guides on the new CD-ROM that accompanies this edition. In summary,
almost 2200 of these 8650-plus problems and questions are new, and the text
discussion and explanations have undergone corresponding alteration and im-
provement.

| PRINCIPAL NEW FEATURES
|

The current revision of the text features

* Early transcendentals fully integrated in Semester I.
* Differential equations and applications in Semester II.
¢ Linear systems and matrices in Semester I11.

Complete coverage of the calculus of transcendental functions is now fully
integrated in Chapters 1 through 6—with the result that the Chapter 7 and 8 titles in
the Sth edition table of contents do not appear in this 6th edition.

A new chapter on differential equations (Chapter 8) now appears immediately
after Chapter 7 on techniques of integration. It includes both direction fields and
Euler’s method together with the more elementary symbolic methods (which exploit
techniques from Chapter 7) and interesting applications of both first- and second-
order equations. Chapter 10 (Infinite Series) now ends with a new section on power
series solutions of differential equations, thus bringing full circle a unifying focus of
second-semester calculus on elementary differential equations.

Linear systems and matrices, ending with an elementary treatment of eigenval-
ues and eigenvectors, are now introduced in Chapter 11. The subsequent coverage of
multivariable calculus now integrates matrix methods and terminology with the tra-
ditional notation and approach—including (for instance) introduction and extensive
application of the chain rule in matrix-product form.

Xiil

Please turn to page xxi to see other text versions.



XiV  PREFACE

| NEW LEARNING RESOURCES
|

Conceptual Discussion Questions The set of problems that concludes each
section is now preceded by a brief Concepts: Questions and Discussion set consisting
of several open-ended conceptual questions that can be used for either individual
study or classroom discussion.

The Text CD-ROM The content of the new CD-ROM that accompanies this
text is fully integrated with the textbook material, and is designed specifically for
use hand-in-hand with study of the book itself. This CD-ROM features the following
resources to support learning and teaching:

¢ Interactive True/False Study Guides that reinforce and encourage student
reading of the text. Ten author-written questions for each section carefully
guide students through the section, and students can request individual hints
suggesting where in the section to look for needed information.

¢ Live Examples feature dynamic multimedia and computer algebra
presentations—many accompanied by audio explanations—which enhance
student intuition and understanding. These interactive examples expand upon
many of the textbook’s principal examples; students can change input data
and conditions and then observe the resulting changes in step-by-step
solutions and accompanying graphs and figures. Walkthrough videos
demonstrate how students can interact with these live examples.

* Homework Starters for the principal types of computational problems in each
textbook section, featuring both interactive presentations similar to the live
examples and (web-linked) voice-narrated videos of pencil-and-paper
investigations illustrating typical initial steps in the solution of selected
textbook problems.

¢ Computing Project Resources support most of the over three dozen projects
that follow key sections in the text. For each such project marked in the text by
a CD-ROM icon, more extended discussions illustrating Maple, Mathematica,
MATLAB, and graphing calculator investigations are provided. Computer
algebra system commands can be copied and pasted for interactive execution.

¢ Hyperlinked Maple Worksheets contributed by Harald Pleym of Telemark
University College (Norway) constitute an interactive version of essentially
the whole textbook. Students and faculty using Maple can change input data
and conditions in most of the text examples to investigate the resulting
changes in step-by-step solutions and accompanying graphs and figures.

¢ PowerPoint Presentations provide classroom projection versions of about 350
of the figures in the text that would be least convenient to reproduce on a
blackboard.

* Website The contents of the CD-ROM together with additional learning and
teaching resources are maintained and updated at the textbook website
www.prenhall.com/edwards, which includes a Comments and Suggestions
center where we invite response from both students and instructors,

Computerized Homework Grading System About 2000 of the textbook
problems are incorporated in an automated grading system that is now available.
Each problem solution in the system is structured algorithmically so that students
can work in a computer lab setting to submit homework assignments for automatic
grading. (There is a small annual fee per participating student.)

New Solutions Manuals The entirely new 1900-page Instructor’s Solutions
Manual (available in two volumes) includes a detailed solution for every problem
in the book. These solutions were written exclusively by the authors and have been
checked independently by others.

Please turn to page xxi to see other text versions.



PREFACE XV

The entirely new 950-page Student Solutions Manual (available in two volumes)
includes a detailed solution for every odd-numbered problem in the text. The answers
(alone) to most of these odd-numbered problems are included in the answers section
at the back of this book.

New Technology Manuals Each of the following manuals is available shrink-
wrapped with any version of the text for half the normal price of the manual (all of
which are inexpensive):

Jensen, Using MATLAB in Calculus (0-13-027268-X)
Freese/Stegenga, Calculus Concepts Using Derive (0-13-085152-3)
Gresser, TI Graphing Calculator Approach, 2e (0-13-092017-7)
Gresser, A Mathematica Approach, 2e (0-13-092015-0)

Gresser, A Maple Approach, 2e (0-13-092014-2)

| THE TEXT IN MORE DETAIL . ..

In preparing this edition, we have taken advantage of many valuable comments and
suggestions from users of the first five editions. This revision was so pervasive that
the individual changes are too numerous to be detailed in a preface, but the following
paragraphs summarize those that may be of widest interest.

¥ New Problems Most of the almost 800 new problems lie in the intermediate
range of difficulty, neither highly theoretical nor computationally routine. Many
of them have a new technology flavor, suggesting (if not requiring) the use of
technology ranging from a graphing calculator to a computer algebra system.

¥ Discussion Questions and Study Guides We hope the 330 conceptual dis-
cussion questions and 1080 true/false study-guide questions constitute a useful
addition to the traditional fare of student exercises and problems. The True/False
Study Guide for each section provides a focus on the key ideas of the section, with
the single goal of motivating guided student reading of the section.

v Examples and Explanations About 20% of the book’s worked examples are
either new or significantly revised, together with a similar percentage of the text
discussion and explanations. Additional computational detail has been inserted
in worked examples where students have experienced difficulty, together with
additional sentences and paragraphs in similar spots in text discussions.

¥ Project Material Many of the text’s almost 40 projects are new for this edition.
These appear following the problem sets at the ends of key sections throughout
the text. Most (but not all) of these projects employ some aspect of modern com-
putational technology to illustrate the principal ideas of the preceding section, and
many contain additional problems intended for solution with the use of a graphing
calculator or computer algebra system. Where appropriate, project discussions are
significantly expanded in the CD-ROM versions of the projects.

¥ Historical Material Historical and biographical chapter openings offer students
a sense of the development of our subject by real human beings. Indeed, our ex-
position of calculus frequently reflects the historical development of the subject—
from ancient times to the ages of Newton and Leibniz and Euler to our own era
of new computational power and technology.

Please turn to page xxi to see other text versions.




XVi  PREFACE

| TEXT ORGANIZATION
|

¥ Introductory Chapters Instead of a routine review of precalculus topics, Chap-
ter 1 concentrates specifically on functions and graphs for use in mathematical
modeling. It includes a section cataloging informally the elementary transcen-
dental functions of calculus, as background to their more formal treatment using
calculus itself. Chapter 1 concludes with a section addressing the question “What
is calculus?” Chapter 2 on limits begins with a section on tangent lines to motivate
the official introduction of limits in Section 2.2. Trigonometric limits are treated
throughout Chapter 2 in order to encourage a richer and more visual introduction
to the limit concept.

v Differentiation Chapters The sequence of topics in Chapters 3 and 4 differs a
bit from the most traditional order. We attempt to build student confidence by
introducing topics more nearly in order of increasing difficulty. The chain rule
appears quite early (in Section 3.3) and we cover the basic techniques for differ-
entiating algebraic functions before discussing maxima and minima in Sections
3.5 and 3.6. Section 3.7 treats the derivatives of all six trigonometric functions, and
Section 3.8 (much strengthened for this edition) introduces the exponential and
logarithmic functions. Implicit differentiation and related rates are combined in a
single section (Section 3.9). The authors’ fondness for Newton’s method (Section
3.10) will be apparent.

The mean value theorem and its applications are deferred to Chapter 4. In
addition, a dominant theme of Chapter 4 is the use of calculus both to construct
graphs of functions and to explain and interpret graphs that have been constructed
by a calculator or computer. This theme is developed in Sections 4.4 on the first
derivative test and 4.6 on higher derivatives and concavity. But it may also be
apparent in Sections 4.8 and 4.9 on I'Hopital’s rule, which now appears squarely
in the context of differential calculus and is applied here to round out the calculus
of exponential and logarithmic functions.

¥ Integration Chapters Chapter 5 begins with a section on antiderivatives—
which could logically be included in the preceding chapter, but benefits from
the use of integral notation. When the definite integral is introduced in Sections
5.3 and 5.4, we emphasize endpoint and midpoint sums rather than upper and
lower and more general Riemann sums. This concrete emphasis carries through
the chapter to its final section on numerical integration.

Chapter 6 begins with a largely new section on Riemann sum approxima-
tions, with new examples centering on fluid flow and medical applications. Sec-
tion 6.6 is a new treatment of centroids of plane regions and curves. Section 6.7
gives the integral approach to logarithms, and Sections 6.8 and 6.9 cover both
the differential and the integral calculus of inverse trigonometric functions and
of hyperbolic functions.

Chapter 7 (Techniques of Integration) is organized to accommodate those
instructors who feel that methods of formal integration now require less empha-
sis, in view of modern techniques for both numerical and symbolic integration.
Integration by parts (Section 7.3) precedes trigonometric integrals (Section 7.4).
The method of partial fractions appears in Section 7.5, and trigonometric substi-
tutions and integrals involving quadratic polynomials follow in Sections 7.6 and
7.7. Improper integrals appear in Section 7.8, with new and substantial subsections
on special functions and probability and random sampling. This rearrangement of
Chapter 7 makes it more convenient to stop wherever the instructor desires.

Vv Differential Equations This entirely new chapter begins with the most elemen-
tary differential equations and applications (Section 8.1) and then proceeds to

Please turn to page xxi to see other text versions.



PREFACE  XVii

introduce both graphical (slope field) and numerical (Euler) methods in Sec-
tion 8.2. Subsequent sections of the chapter treat separable and linear first-order
differential equations and (in more depth than usual in a calculus course) applica-
tions such as population growth (including logistic and predator-prey populations)
and motion with resistance. The final two sections of Chapter 8 treat second-order
linear equations and applications to mechanical vibrations. Instructors desiring
still more coverage of differential equations can arrange with the publisher to
bundle and use appropriate sections of Edwards and Penney, Differential Equa-
tions: Computing and Modeling 2/e (Prentice Hall, 2000).

Vv Parametric Curves and Polar Coordinates The principal change in Chapter 9
is the replacement of three separate sections in the 5th edition on parabolas,
ellipses, and hyperbolas with a single Section 9.6 that provides a unified treatment
of all the conic sections.

¥ Infinite Series  After the usual introduction to convergence of infinite sequences
and series in Sections 10.2 and 10.3, a combined treatment of Taylor polynomials
and Taylor series appears in Section 10.4. This makes it possible for the instructor
to experiment with a briefer treatment of infinite series, but still offer exposure
to the Taylor series that are so important for applications. The principal change
in Chapter 10 is the addition of a new final section on power series methods
and their use to introduce new transcendental functions, thereby concluding the
middle third of the book with a return to differential equations.

¥ Vectors and Matrices  After covering vectors in its first four sections, Chapter 11
continues with three sections on solution of linear systems (through elementary
Gaussian elimination), matrices (through calculation of inverse matrices), and
eigenvalues and eigenvectors and their use in classification of rotated conics. This
introduction of linear systems and matrices provides the preparation required
for the matrix-oriented multivariable calculus of Chapter 13. The intervening
Chapter 12 (Curves and Surfaces in Space) includes discussion of Kepler-Newton
motion of planets and satellites. The chapter includes also a brief application of
eigenvalues to the discussion of rotated quadric surfaces in space.

¥V Multivariable Calculus Appropriately enough, the introduction and initial ap-
plication of partial derivatives is traditional. But, beginning with the introduction
of the multivariable chain rule in matrix-product form, matrix notation and termi-
nology is used consistently in the remainder of Chapter 13. This approach affords
a more clear-cut treatment of differentiability and linear approximation of multi-
variable functions, as well as of directional derivatives and Lagrange multipliers.
We conclude Chapter 13 with a classification of critical points based on eigenval-
ues of the (Hessian) matrix of second derivatives (thereby generalizing directly
the second derivative test of single-variable calculus). As a final illustration of the
utility of matrix methods, this approach unifies the standard discriminant-based
classification of two-variable critical points with the analogous classification of crit-
ical points for functions of three or more variables. Matrix methods (naturally)
are needed less frequently in Chapters 14 (Multiple Integrals) and 15 (Vector
Calculus), but appear whenever a change of variables in a multiple integral is
involved.

| OPTIONS IN TEACHING CALCULUS
l

The present version of the text is accompanied by a more traditional version that
treats transcendental functions later in single variable calculus and omits matrices
in multivariable calculus. Both versions of the complete text are also available in

Please turn to page xxi to see other text versions.
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two-volume split editions. By appropriate selection of first and second volumes, the
instructor can therefore construct a complete text for a calculus sequence with

¢ Early transcendentals in single variable calculus and matrices in multivariable
calculus;

¢ Early transcendentals in single variable calculus but traditional coverage of
multivariable calculus;

¢ Transcendental functions delayed until after the integral in single variable
calculus, but matrices used in multivariable calculus;

e Neither early transcendentals in single variable calculus nor matrices in
multivariable calculus.
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