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Preface

The present book is designed to meet the requirements of Thermal Physics, also known as Heat
and Thermodynamics at undergraduate level. I have been very careful in selecting the topics,
laying their sequence and the style of presentation so that students may not afraid of learning
new concepts. Realizing the mental state of undergraduate students every attempt has been made
to present the material in most elementary and easily digestible form. To this end a sufficient
number of examples have been added. Though I have made my best effort in this attempt on the
subject while planning the layout of the text and the subject matter, I cannot guess as to how far
I have come up to the expectations of esteemed readers, scholars, teachers, learned physicists
and students. They have to judge my work critically and pass their constructive criticisms either
to me or to the publishers so that my future endeavour be to enlarge and correct mistakes and
polish the text in such a way that it becomes more and more object-oriented for the students.

I am thankful to my colleagues, family members and the publishers for their cooperation during
writing of the manuscript and its composing and printing. To err is human. Therefore, I hope
that in future the readers of this book will help me in correcting any typographical error or
conceptual mistake which might have escaped my attention during proof-reading and printing.

In the end, I await the response which this book draws from learned scholars and students.

R.B. Singh
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ealal Kinetic Theory of
Gases

1.1 INTRODUCTION

A vast number of experiments show that heat is a kind of energy associated with molecular motion. In
kinetic model, the matter is assumed to be made up of tiny particles called molecules. The molecules
move in all possible directions with varying speeds i.e., their motion is completely random. Their
speeds increase with rise in temperature of the substance. The molecular kinetic energy is a measure
of heat content in a body.

In solids, molecules are closely packed due to intermolecular forces. They cannot move bodily
from one place to another. However, they can vibrate about their mean position. For this reason,
solids have definite shape and size or volume. In liquids, molecules are at larger distances in
comparison to solids and the intermolecular forces are a bit smaller in magnitude. The molecules of
liquid cannot leave the liquid but move to anywhere inside it. Liquids have definite volume but not
size. In gases, the molecules are at larger distances from each other than those in liquids and the
intermolecular forces are very weak. The molecules are free to move anywhere and hence gases have
neither definite volume nor any shape. Because gases obey simple laws, the kinetic model of matter
was first applied to them. The work of Joule, Bernoulli, Clausius, Maxwell, Boltzmann, James Jean,
Lorentz, Rayleigh van der Waals, Planck, Helmholtz, Gibbs etc., laid the foundation of theory of
heat over which the modern theory of matter was erected. The present chapter is devoted to the study
of kinetic theory of gases.

1.2 FUNDAMENTAL ASSUMPTIONS OF KINETIC THEORY OF IDEAL GASES

The kinetic theory of gases is based on the following assumptions:

(1) A small sample of gas consists of a very large number of molecules. At standard conditions,
1 kilomol of an ideal gas occupies 22.4 m> volume and contains N 4, = 6.023 X 10% molecules
i.e., 1 cm® of gas contains 3 X 10'° molecules.

(2) The molecules of a gas are like hard spheres and are perfectly elastic. The molecular diameter is
about 2 or 3 X 10™'° m. The molecules are in continuous motion in all possible directions i.e., there
is no preferred direction of motion. Meaning thereby the molecular motion is chaotic in nature.

(3) Not all molecules have the same speed. Their speeds vary from a low value to a very high
value. The range of molecular speed is so large that no appreciable error is made in taking the
range from zero to infinity.
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(4) The collision between any two molecules and between molecule and the wall of the containing
vessel are perfectly elastic. When molecules strike the walls of the vessel, they transfer mo-
mentum to the wall. The rate of change of momentum suffered by molecules exerts force on
the wall. This is origin of pressure of the gas.

(5) The molecules exert no forces among themselves except when they collide. That is, intermo-
lecular forces are assumed to be absent.

(6) The molecules occupy negligible volume in comparison to the volume of the containing vessel.

(7) The duration of collision between the molecules is very small. Between two collisions molecules
move in straight lines and the average distance between two collisions is called mean free path.

1.3 MOLECULAR FLUX

Consider an ideal gas consisting of N molecules enclosed in a vessel volume V. The molecules move
chaotically in all possible directions with all possible speed from zero to infinity. Let us represent the
velocities of the molecules as vectors and call it velocity vectors. These vectors have all possible
magnitude and directions. Now transfer the tails of all velocity vectors to a common origin O and
imagine a sphere of arbitrary radius  with center at O such that all the velocity vectors intersect the
surface of the sphere. The number of points of intersection of velocity vectors with the sphere is equal
to the number N of molecules in the gas. The surface density of these points is N/(4mtr?). Now consider
an element of area dA on the sphere at point (r, 6, ¢) as shown in the figure. This area is equal to
dA = r? sin © dO d¢. The number of points on this represents the number of molecules with velocities
in the direction between 0 and 6 + @0, and @ and @ + d¢. We denote this number by dNy,. Thus

N N (dA N N
dN,, = | —= |dA = — | — | = — dQpy, = —.sin0dddo ...(1.1
o¢ (4n rzj 4 (rzj T i AR

where dQy,, is the solid angle subtended by area dA at the origin O.

We are interested in finding the number of molecules arriving per second from one side at a unit
area of an imaginary surface within the gas. Let dN, denote the number of molecules whose velocities
have magnitude in the range v and v+dv irrespective of their direction of motion and dNy,, those
molecules moving with speeds between v and v+dv and directions in the angle intervals from 0 to
0+d0 and from ¢ to @ + d@. dNy,, is given by

dQy, sinBdod g
@Nogy = dlNp-— - ==, =20 = (1.2)
Let us first find the number of molecules arriving at an element of surface dS of the vessel towards
which dNy,, molecules are moving. To this end, we mentally construct a cylinder with area dS as
base and v dr as length. The volume of this cylinder is

dV = (dS cosb) (vdt)

A fraction % of dNy,, molecules will strike the surface dS and this number is
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=rd0 r sin6 do
— //," 0
Y Y
S P!
dQgy = f,’—:‘=sineded¢
X
Fig. 1.1.
dv sin® do d dsS cos O - vdt
ANogy s = dNogy - = dN, ( = ‘p)( = ) .(1.3)
7
> /
&
%
,vdV=dS cos 6.vdt
: i
: |
: Y
) E /
X

Fig. 1.2.

The number of molecules having speed in the range dv about v and striking unit area in unit time
in 0-¢ direction is

dN,
000 i A
APy, = dS-d:S e (vdN,) (sin 6 cos 0 d8) (do) ...(1.4)

The total number of molecules arriving at unit area in unit time from one side is obtained by
integrating d®y,,,, within the limits of v from 0 to vy,,,, 8 from 0 to /2, and ¢ from O to 2.

1 Dinax /2 2n
D = s I vdN, j sinecosedejd(p
0 0 0
Vg vdN,
saat f dev(l)(Zn) . {
4nV < 2 B



