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Introduction

1.1 Motivation

Algebraic and arithmetic geometry in positive characteristic provide important
examples of imperfect fields, such as (i) Laurent-series fields over finite fields
and (ii) function fields of positive-dimensional varieties (even over an alge-
braically closed field of constants). Generic fibers of positive-dimensional al-
gebraic families naturally lie over a ground field as in (ii).

For a smooth connected affine group G over a field k, the unipotent radical
H#u(Gg) C G may not arise from a k-subgroup of G when k is imperfect.
(Examples of this phenomenon will be given shortly.) Thus, for the maximal
smooth connected unipotent normal k-subgroup %),  (G) C G (the k-unipotent
radical), the quotient G/Z#,, x (G) may not be reductive when k is imperfect.

A pseudo-reductive group over a field k is a smooth connected affine k-
group G such that %, x (G) is trivial. For any smooth connected affine k-group
G, the quotient G/ %), x(G) is pseudo-reductive. A pseudo-reductive k-group
G that is perfect (i.e., G equals its derived group Z(G)) is called pseudo-
semisimple. If k is perfect then pseudo-reductive k-groups are connected re-
ductive k-groups by another name. For imperfect k the situation is completely
different:

Example 1.1.1. Weil restrictions G = Ry (G’) for finite extensions k" /k and
connected reductive k’-groups G’ are pseudo-reductive [CGP, Prop. 1.1.10]. If
G’ is nontrivial and k’/ k is not separable then such G are never reductive [CGP,
Ex. 1.6.1]. A solvable pseudo-reductive group is necessarily commutative [CGP,
Prop. 1.2.3], but the structure of commutative pseudo-reductive groups appears
to be intractable (see [T]). The quotient of a pseudo-reductive k-group by a
smooth connected normal k-subgroup or by a central closed k-subgroup scheme
can fail to be pseudo-reductive, and a smooth connected normal k-subgroup of
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a pseudo-semisimple k-group can fail to be perfect; see [CGP, Ex. 1.3.5, 1.6.4]
for such examples over any imperfect field k.

A typical situation where the structure theory of pseudo-reductive groups
is useful is in the study of smooth affine k-groups about which one has limited
information but for which one wishes to prove a general theorem (e.g., cohomo-
logical finiteness); examples include the Zariski closure in GL,, of a subgroup
of GL, (k), and the maximal smooth k-subgroup of a schematic stabilizer (as in
local-global problems). For questions not amenable to study over k when k is
imperfect, this structure theory makes possible what had previously seemed out
of reach over such &: to reduce problems for general smooth affine k-groups to
the reductive and commutative cases (over finite extensions of k). Such proce-
dures are essential to prove finiteness results for degree-1 Tate-Shafarevich sets
of arbitrary affine group schemes of finite type over global function fields, even
in the general smooth affine case; see [C1, §1] for this and other applications.

A detailed study of pseudo-reductive groups was initiated by Tits; he con-
structed several instructive examples and his ultimate goal was a classification.
The general theory developed in [CGP] by characteristic-free methods includes
the open cell, root systems, rational conjugacy theorems, the Bruhat decompo-
sition for rational points, and a structure theory “modulo the commutative case”
(summarized in [C1, §2] and [R]). The lack of a concrete description of commu-
tative pseudo-reductive groups is not an obstacle in applications (see [C1]).

In general, if G is a smooth connected affine k-group then %,  (G)x C
Iy k (G ) for any extension field K/k, and this inclusion is an equality when
K is separable over k [CGP, Prop. 1.1.9] but generally not otherwise (e.g., equal-
ity fails with K = k for any imperfect k and non-reductive pseudo-reductive G).
Taking K = kg shows that G is pseudo-reductive if and only if Gy is pseudo-
reductive (and also shows that if k is perfect then pseudo-reductive k-groups are
precisely connected reductive k-groups). Hence, any smooth connected normal
k-subgroup of a pseudo-reductive k-group is pseudo-reductive.

Every smooth connected affine k-group G is generated by Z(G) and a
single Cartan k-subgroup. Since Z(G) is pseudo-semisimple when G is pseudo-
reductive [CGP, Prop. 1.2.6], and Cartan k-subgroups of pseudo-reductive k-
groups are commutative and pseudo-reductive, the main work in describing
pseudo-reductive groups lies in the pseudo-semisimple case. A smooth affine
k-group G is pseudo-simple (over k) if it is pseudo-semisimple, nontrivial, and
has no nontrivial smooth connected proper normal k-subgroup; it is absolutely
pseudo-simple if Gy is pseudo-simple. (See [CGP, Def. 3.1.1, Lemma 3.1.2]
for equivalent formulations.) A pseudo-reductive k-group G is pseudo-split if it
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contains a split maximal k-torus 7', in which case any two such tori are conjugate
by an element of G (k) [CGP, Thm. C.2.3]

Remark 1.1.2. If G is a pseudo-semisimple k-group then the set {G;} of its
pseudo-simple normal k-subgroups is finite, the G;’s pairwise commute and
generate G, and every perfect smooth connected normal k-subgroup of G is
generated by the G;’s that it contains (see [CGP, Prop. 3.1.8]). The core of the
study of pseudo-reductive groups G is the absolutely pseudo-simple case.

Although [CGP] gives general structural foundations for the study and appli-
cation of pseudo-reductive groups over any imperfect field k, there are natural
topics not addressed in [CGP] whose development requires new ideas, such as:

(i) Are there versions of the Isomorphism and Isogeny Theorems for pseudo-
split pseudo-reductive groups and of the Existence Theorem for pseudo-
split pseudo-simple groups?

(ii) The standard construction (see §2.1) is exhaustive when p := char(k) #
2. 3. Incorporating constructions resting on exceptional isogenies [CGP,
Ch. 7-8] and birational group laws [CGP, §9.6—§9.8] gives an analogous
result when p = 2.3 provided that [k : k%] = 2 if p = 2; see [CGP,
Thm. 10.2.1, Prop. 10.1.4]. More examples exist if p =2 and [k : k?] > 2
(see §1.3); can we generalize the standard construction for such k?

(iii) Is the automorphism functor of a pseudo-semisimple group representable?
(Representability fails in the commutative pseudo-reductive case.) If so,
what can be said about the structure of the identity component and com-
ponent group of its maximal smooth closed subgroup Aut“G"} x (thereby
defining a notion of “pseudo-inner” kg /k-form via (Aut"&‘}k )%)?

(iv) What can be said about existence and uniqueness of pseudo-split kg / k-
forms, and of quasi-split pseudo-inner kg / k-forms? (“Quasi-split” means
the existence of a solvable pseudo-parabolic k-subgroup.)

(v) Is there a Tits-style classification in the pseudo-semisimple case recover-
ing the version due to Tits in the semisimple case? (Many ingredients in
the semisimple case break down for pseudo-semisimple G; e.g., G may
have no pseudo-split ks / k-form, and the quotient G/ Z of G modulo the
scheme-theoretic center Zg can be a proper k-subgroup of (Aut“G"}k)O.)

The special challenges of characteristic 2 are reviewed in §1.3-§ 1.4 and §4.2.
Recent work of Gabber on compactification theorems for arbitrary linear alge-
braic groups uses the structure theory of pseudo-reductive groups over general
(imperfect) fields. That work encounters additional complications in character-
istic 2 which are overcome via the description of pseudo-reductive groups as
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central extensions of groups obtained by the “generalized standard” construction
given in Chapter 9 of this monograph (see the Structure Theorem in §1.6).

1.2 Root systems and new results

A maximal k-torus 7 in a pseudo-reductive k-group G is an almost direct prod-
uct of the maximal central k-torus Z in G and the maximal k-torus 7’ :=
TNZ(G)in 2(G) [CGP, Lemma 1.2.5]. Suppose T is split, so the set ® :=
®(G, T) of nontrivial T-weights on Lie(G) injects into X(7"’) via restriction.

The pair (®, X(7")q) is always a root system (coinciding with ®(2(G),T")
since G/ 2(G) is commutative) [CGP, Thm. 2.3.10], and can be canonically
enhanced to a root datum [CGP, §3.2]. In particular, to every pseudo-semisimple
ks-group we may attach a Dynkin diagram. However, (®,X(7")q) can be non-
reduced when k is imperfect of characteristic 2 (the non-multipliable roots are
the roots of the maximal geometric reductive quotient G™%). A pseudo-split
pseudo-semisimple group is (absolutely) pseudo-simple precisely when its root
system is irreducible [CGP, Prop. 3.1.6].

This monograph builds on earlier work [CGP] via new techniques and con-
structions to answer the questions (i)—(v) raised in §1.1. In so doing, we also
simplify the proofs of some results in [CGP]. (For instance, the standardness
of all pseudo-reductive k-groups if char(k) # 2,3 is recovered here by another
method in Theorem 3.4.2.) Among the new results in this monograph are:

(i) pseudo-reductive versions of the Existence, Isomorphism, and Isogeny
Theorems (see Theorems 3.4.1, 6.1.1, and A.1.2),

(ii) a structure theorem over arbitrary imperfect fields k (see §1.5-§1.6),

(iii) existence of the automorphism scheme Autg/ for pseudo-semisimple
G, and properties of the identity component and component group of its
maximal smooth closed k-subgroup Aut"G"} « (see Chapter 6),

(iv) uniqueness and optimal existence results for pseudo-split and “quasi-split”
ks / k-forms for imperfect k, including examples (in every positive char-
acteristic) where existence fails (see §1.7),

(v) a Tits-style classification of pseudo-semisimple k-groups G in terms of
both the Dynkin diagram of G with x-action of Gal(ky/ k) on it and the
k-isomorphism class of the embedded anisotropic kernel (see §1.7).

We illustrate (v) in Appendix D by using anisotropic quadratic forms over k to
construct and classify absolutely pseudo-simple groups of type F4 with k-rank
2 (which never exist in the semisimple case).
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1.3 Exotic groups and degenerate quadratic forms

If p =2 and [k : k?] > 2 then there exist families of non-standard absolutely
pseudo-simple k-groups of types B,, Cp, and BC, (for every n > 1) with no
analogue when [k : k2] = 2. Their existence is explained by a construction with
certain degenerate quadratic spaces over k that exist only if [k : k2] > 2:

Example 1.3.1. Let (V.g) be a quadratic space over a field k with char(k) = 2,
d:=dimV >3,and ¢ # 0. Let By : (v.w) — ¢(v+w) —q(v)—q(w) be the
associated symmetric bilinear form and V1 the defect space consistingof v e V
such that the linear form By (v.-) on V' vanishes. The restriction ¢|y, 1 is 2-linear
(i.e., additive and g(cv) = c2q(v) forv e V, ¢ € k) and dim(V/ VL) = 2n for
some n > 0 since By induces a non-degenerate symplectic form on V/ VL.

Assume 0 <dim V1 < dim V. Now g is non-degenerate (i.e., the projective
hypersurface (¢ = 0) C P(V*) is k-smooth) if and only if dim V- = 1, which
is to say d = 2n + 1. It is well-known that in such cases SO(g) is an absolutely
simple group of type B, with O(q¢) = w2 x SO(g), so SO(g) is the maximal
smooth closed k-subgroup of O(g) since char(k) = 2. Assume also that (V,q) is
regular; i.e., ker(q|y 1) = 0. Regularity is preserved by any separable extension
on k (Lemma 7.1.1). For such (possibly degenerate) ¢, define SO(g) to be the
maximal smooth closed k-subgroup of the k-group scheme O(g); i.e., SO(q)
is the k-descent of the Zariski closure of O(q)(ks) in O(q)k,. In §7.1-§7.3 we
prove: SO(gq) is absolutely pseudo-simple with root system B,, over k; where
2n = dim(V/ V1), the dimension of a root group of SO(q), 1s 1 for long roots
and dim V' for short roots, and the minimal field of definition over k for the
geometric unipotent radical of SO(q) is the k-finite subextension K C k'/2
generated over k by the square roots (q(v’)/q(v))lf2 for nonzero v,v’ € V1.

For any nonzero vg € VL, the map v (q(v)/q(vo))l/2 is a k-linear injec-
tion of V1 into k /2 with image ¥ containing 1 and generating K as a k -algebra.
If we replace vy with a nonzero vy € ¥+ then the associated k-subspace of K
is A7 where A = (¢(vg)/q(v1))'/? € K*. In particular, the case K # k occurs
if and only if dim V- > 2, which is precisely when the regular ¢ is degenerate,
and always [k : k2] = [kV/2: k] > dim VL. If V1 = K, as happens whenever
[k : k2] = 2, then SO(q) is the quotient of a “basic exotic” k-group [CGP, §7.2]
modulo its center. The SO(g)’s with VL # K (so [k : k2] > 2) are a new class
of absolutely pseudo-simple k-groups of type B, (with trivial center); forn = 1
and isotropic ¢ these are the type-Aj groups PHy 1 gy builtin §3.1.

In §7.2-§7.3 we show that every k-isomorphism SO(g’) >~ SO(q) arises
from a conformal isometry ¢’ >~ ¢ and use this to construct more absolutely
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pseudo-simple k-groups of type B with trivial center via geometrically integral
non-smooth quadrics in Severi—Brauer varieties associated to certain elements
of order 2 in the Brauer group Br(k). Remarkably, this accounts for all non-
reductive pseudo-reductive groups whose Cartan subgroups are tori (see Propo-
sition 7.3.7), and when combined with the exceptional isogeny Sp,,, — SO2,+1
in characteristic 2 via a fiber product construction it yields (in §8.2) new ab-
solutely pseudo-simple groups of type C, when n > 2 and [k : k2] > 2 (with
short root groups over ks of dimension [K : k] and long root groups over kg of
dimension dim V1), A generalization in §8.3 gives even more such k-groups for
n = 2 if [k : k?] > 8 (using that By = C»). In §1.5-§1.6 we provide a context
for this zoo of constructions.

1.4 Tame central extensions

A new ingredient in this monograph is a generalization of the “standard construc-
tion” (from §2.1) that is better-suited to the peculiar demands of characteristic
2. Before we address that, it is instructive to recall the principle underlying the
ubiquity of standardness away from the case char(k) = 2 with [k : k2] > 2, via
splitting results for certain classes of central extensions. We now review the
most basic instance of such splitting, to see why it breaks down completely (and
hence new methods are required) when char(k) = 2 with [k : k2] > 2 (see 1.4.2).

1.4.1. Let G be an absolutely pseudo-simple k-group with minimal field of
definition K/ k for %, (G) C Gy, and let G = G be the miximal semisimple
quotient of Gg. For the simply connected central cover ¢ : G’ — G’ and pu :=
kerg C Zg,, there is (as in [CGP, Def. 5.3.5]) a canonical k-homomorphism

£6:G — Z(Rg/k(G") =R /i (G') Rk k(1) (1.4.1.1)

induced by the natural map ig : G — Rk (G'). The map £ makes sense for
any pseudo-reductive G but (as in [CGP]) it is of interest only for absolutely
pseudo-simple G. By Proposition 2.3.4, ker&g is central if char(k) # 2.

The key to the proof that G is standard if char(k) # 2,3 is the surjectivity of
€ for such k, as then (1.4.1.1) pulls back to a central extension E of Rk (5’)
by ker&g. This central extension is split due to a general fact: if k’/k is an
arbitrary finite extension of fields and ¢’ a connected semisimple k’-group that
is simply connected then for any commutative affine k-group scheme Z of fi-
nite type with no nontrivial smooth connected k-subgroup (e.g., Z = kerég as



