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PREFACE

In the last decade, specialized chromatographic literature and chromatographic
practice have placed emphasis on the identification of individual compounds from
complicated gas chromatograms. Of course, a gas chromatograph-mass spectrometer-
data system has been the most efficient combination. However, much simpler tech-
niques are provided by use of the so-called selective detectors. Selective
detectors give a response only to certain heteroatoms, resulting in a simplified
chromatogram. Many selective systems exist and some of them are manufactured
commercially and employed in routine chromatographic practice.

Recently, new selective detectors have been developed and known detector
designs have been innovated. The aim of this book is to collect and to collate
up-to-date information on this topic to give the reader a detailed understanding
of selective detectors in general, their principles, designs and analytical
possibilities.

Throughout the preparation of the manuscript, I have appreciated the assis-
tance of many people from the Institute of Analytical Chemistry of the Czecho-
slovak Academy of Sciences. Special acknowledgements are due to my colleague
Dr. Josef Novdk who read the manuscript and made valuable suggestions, and to
Mrs. Melita Radevovd for translation into English.

Brno, March 1986 M. DRESSLER
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Chapter 1
INTRODUCTION

Qualitative analysis by gas chromatography (GC) is based on the concept of
the retention characteristics of sample compounds. The absolute values of the
retention characteristics such as retention times, retention volumes or specific
retention volumes, and also the relative values of these quantities such as rela-
tive retention times or volumes or Kovats retention indices are used. The reten-
tion volume, Vp, is determined by the quantities that characterize the chromato-
graphic system, i.e., the dead volume of the column, Vg, the volume of the sta-
tionary phase, Vg, or the surface area of the adsorbent and the partition coef-
ficient, k. The value of X depends on the substance being analysed and the sta-
tionary phase employed:
Vp = Vg + KVg (1.1)

As the partition coefficient is a function of the thermodynamic properties
of the system, the retention volume of a given solute in a given chromatographic
system is constant at constant temperature and pressure, but it is neither
selective nor specific. In addition, the separation power of any chromatographic
column, even the best, is limited. This means that the column has a Timited ca-
pacity for peaks and, therefore, the separation number (Trennzahl, Tz)l, given
by the number of the separated peaks that can be placed between two successive
peaks of neighbouring »n-alkanes:

7z = (d, - dl)/[Yé(1)+ y%(z)] -1 (1.2)

(where d2 = d1 is the distance between the peak maxima of the n-alkanes and Y%
are the peak widths at half-heights) is finite. For complex mixtures (of natural
or biological origin, for instance) not all of the peaks can be separated by the
column even if the partition coefficients of the compounds differ. Consequently,
from a theoretical point of view, only a negative result can be considered as
conclusive in chromatography, i.e., that a compound a is not identical with b
when Ra # VRb.

When performing qualitative analyses on the basis of retention data only, one

should be aware of the rfisk that the chromatographic peak may not pertain to the



substance selected for calibration, although the latter has the same retention
value, and even that it may not be due to a single substance but to two or more
substances that have the same partition coefficients in the given system. Hence
it has been generally accepted that the identification power of GC (and of
chromatography in general) is far less than its excellent separation power.
Therefore, a number of auxiliary techniques have been used for identification
purposes, such as methods utilizing regularities in the partition coefficients
within a homologous series which are known or can be predicted from experimental
data. The retention values can be correlated with values characterizing the
homologous series. Such values are either those that cannot be determined in any
way from the chromatogram (e.g., molecular weight, number of carbon atoms or
boiling point) or those found by chromatographic experiments (e.g., the ratio
of the retention values on two stationary phases differing in polarity, or re-
tention values measured at different temperatures)2’3. By interpolating these
relationships, the retention value for a particular member of a homologous
series can be obtained and compared with the retention value obtained experi-
mentally. The agreement between the two sets of data increases the probability
that the predicted identity will agree with that of the substance being analysed.
However, these identification approaches are labourious and time consuming.

Reaction gas chromatography3’4 is another approach used to facilitate the
identification of individual components on a chromatogram. With this approach,
the sample is subjected to selective reactions intended to remove selected types
of substances from the chromatographic spectrum or to convert them into different
substances. Subsequently, the chromatogram of the original sample is compared
with those obtained after reaction. By introducing chemical reactions into the
system, additional information on the identity of the sample compounds is ob-
tained from the chromatogram, and the possibility of confusing the identities of
the substances is again reduced.

The utilization of the detector itself for the identification of substances
is an efficient approach to the application of auxiliary techniques for qualita-
tive purposes. From the viewpoint of quantitative analysis, chromatography re-
quires a detector that responds as far as possible to all types of sample com-
pounds. If it is sensitive enough, the detector provides a record of all the
solutes, thus making possible their subsequent determination. If, in addition,
the detector response per unit solute mass (weight or number of moles) is si-
milar for different types of compound, which is very advantageous for quanti-
tative analysis, the detector itself provides no data for qualitative purposes.

The availability of a detector that gives a response that differs in some way
for a certain type of compound from that for other compounds is obviously ad-
vantageous in qualitative analysis. Therefore, let us consider the ways in which
the response of a certain detector can differ for different types of compounds.



It can differ, first of all, in the level of the response per unit solute mass.
The ideal case would be represented by a detector responding to a certain type
of compound only (e.g. to a certain kind of heteroatom in a molecule of these
compounds). As will be seen later, no gas chromatographic detector meets this
requirement. However, selective detectorss_8 are available the response of which
per unit mass to compounds containing a certain heteroatom differs considerably
from the response to other compounds. In addition to the level of the response,
the detector response to various compounds can also differ in polarity. Spectral
detectors such as the mass or infrared spectrometer supply, in addition to the
common chromatographic record, data for each peak that allow one to characterize
the compound. It is therefore evident that the detector itself can contribute to
the identification of chromatographed compounds, if a suitable selective detector
is properly selected for a particular case and if optimum operating conditions
for the chosen detector are maintained. In order to function properly, selective
detectors must be operated under optimum conditions. In other words, there are

a number of operating variables that can either adversely affect or even nullify
the function of the selective detector.

Descriptions of the individual selective detectors and of the principles
providing the basis for their operation, an analysis of the effects of the
various operating conditions on the basic parameters of the selective detectors
and consideration of the potential use of these detectors in qualitative analysis
are the subjects of this book.
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2.1. DETECTOR SENSITIVITY

Detector sensitivity is the basic term used in describing any detector. In
spite of the frequent use of this term, there is great non-uniformity in
expressing detector sensitivity in the 11terature1'9, which has resulted in
misleading interpretations in many instances. Frequently, terms such as molar
response, detection Timit and minimum detectable amount are used to express
detector sensitivity. In addition, different terms have been used for the same
thing. For instance, the terms minimum detectable amount, minimum detectable
quantity, minimum detectable 1imit, detection Timit, minimum detectability and
limit of detectability have been used to express the minimum detectable rate
of introduction of solute mass into the detector.

The detector responds to an eluted sample compound, to the carrier gas and
to other compounds that may be present and the response (®) can be expressed
by

R=R,+R +R, (2.1)

Under stabilized chromatographic conditions, the response to the carrier gas
(Rm) and to the impurities (Rx) is constant and can be compensated to zero by
the applied counter voltage. Thus, the net response given by the detector during
the passage of an eluted sample compound through the detector is equal to the
response to that compound, R;.



