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PREFACE

This is H. F. Harmuth’s eighth long contribution to these Advances and it
adds a new chapter to his many studies of Maxwell’s equations and his more
recent preoccupations with finite difference equations instead of differential
equations, in which he is joined by B. Meffert. A first examination of these
questions formed volume 129 of these Advances and here, the work on quantum
mechanics is pursued more deeply. The Klein—-Gordon equation is at the heart of
this volume but chapters are also devoted to the many difficult and little-studied
problems that arise when discreteness is imposed and finite difference equations
must be solved.

I am delighted to include this work in these Advances and hope, by doing
s0, to provoke much discussion among the theoreticians of quantum mechanics.

Peter Hawkes
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FOREWORD

The ancient Greeks did not distinguish between mathematics as a science of
the thinkable and physics as a science of the observable. This cast long shadows
over the development of physics. As a first example we cite the dogma of the
circle. Ptolemy expressed it as follows:

. we believe it is the necessary purpose and aim of the mathematician to show
forth all the appearances of the heavens as products of regular and circular motion.
(Ptolemy, 1952, Almagest, Book III, 1; p. 83, §2)

It is generally assumed that Kepler ended the dogma of the circle, but this is
true only for astronomy. The superposition of deferents and epicycles of
Ptolemy and Copernicus developed into the Fourier series in complex notation.
We meet the old circle under the new name exponential function ¢ in the
complex plane. Another circle in disguise is the character group {”*} of the
topologic group of real numbers. The word the in the title provides the connection
with Greek thinking. Mathematics justifies only the name a character group. . ..

A second long shadow was cast by Euclid’s geometry. Navigators had been
using spherical trigonometry since about 1500 to chart their course across the
oceans. But the greatest mathematicians struggled three centuries later with the
question of whether Euclid’s geometry was the only possible one.

Here we are concerned with a third long shadow, the dogma of the
continuum of physical space and time. It can be traced back to the Eleatic school
of the Greeks in southern Italy. Zeno of Elea (c. 490—c. 430 BCE) advanced the
paradox of the race between Achilles and the turtle as well as that of the arrow
that does not fly, to refute the continuum or the infinite divisibility of distances
in space and time. Zeno’s paradoxes were in turn refuted by Aristotle in his
Physica. Aristotle’s arguments in favor of a mathematical continuum for the
physical space and time were so convincing that they were questioned rarely
since. The physics of space and time became a branch of mathematics.

Newton demonstrated the perception of physics as a branch of mathematics
when he wrote

Absolute, true and mathematical time, of itself, and from its nature, flows equably
without connection with anything external, .... (Newton, 1971, p. 6)

Newton and Leibniz carried the concept of infinite divisibility from the
denumerable infinite of the Greeks to the nondenumerable infinite of differential
calculus.

The development of non-Euclidean geometries and the experimental
verification of the acoustic Doppler effect changed our thinking about time
and space to the concepts used in the special and the general theory of relativity,

Xix



XX FOREWORD

and beyond. A quotation of Einstein from his later years shows this
development:

But to connect every instant of time with a number, by the use of a clock, to regard
time as an one-dimensional continuum, is already an invention. So also are the
concepts of Euclidean and non-Euclidean geometry, and our space understood as a
three-dimensional continuum. (Einstein and Infeld, 1938, p. 311)

The straightforward proof of a continuum of physical space and time would
be the observation of events at two spatial points x and x + dx or two times ¢
and 7 + dt. What is physically possible are observations at x and x + Ax or f and
t + Az, where Ax and Ar may be very small but must be finite. Any finite
interval Ax, At can be divided into nondenumerably many subintervals dx, dt,
which means we are a long way from a mathematical continuum.

If we want to use finite differences Ax, At instead of differentials dx, dr we
must use the calculus of finite differences instead of the differential calculus. This
is a true generalization since no fixed values for Ax, Ar are specified at the
beginning of the calculation. When solving for the eigenfunctions of a difference
equation in relativistic quantum physics we typically get well-behaved functions
if the spatial resolution Ax is large enough, but sequences of random numbers
for too small values of Ax. This is how the calculation represents the Compton
effect. The theory goes beyond Heisenberg’s uncertainty relation since it puts a
lower limit on Ax rather than on the product AxAp.

Consider elementary particles within the framework of differential calculus.
We must match the physical situation to the mathematical method and we do so
by defining elementary particles to be “point-like”” to avoid giving them any
spatial features. Using the calculus of finite differences we must demand only
that an elementary particle is smaller than an arbitrarily small but finite distance
Ax to avoid any observable spatial feature. The difference theory clearly offers
the better choice.

A particle with mass mq can become an antiparticle with mass —m without
a quantum jump in the difference theory. Under certain conditions a finite
spatial resolution Ax permits such a transition without violating any physical
laws.

Generally, the theorem of Holder stated in 1887 that the gamma function
can be defined by a simple difference equation I'(x + 1) = xI'(x) but by no
algebraic differential equation. This implies that differential and difference
equations define different classes of functions.

The calculus of finite differences predates the differential calculus since
differentials are obtained as limits of finite differences. The success of differential
calculus in science and engineering stimulated its enormous development. There
were no comparable applications for the calculus of finite differences before its
usefulness for relativistic quantum physics was discovered and there was thus
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little development. Our Bibliography lists only 10 mathematical books on the
calculus of finite differences published in the twentieth century'.

We want to thank Humboldt-Universitét of Berlin for help with computer
and library services.

Henning F. Harmuth

'Our search was limited to books in English, French, German, Russian, and Spanish. We would
be grateful for information about books in Chinese or Japanese.
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List of Frequently Used Symbols

As/m
Vs/m
Vs/m?

m/s

electric vector potential

magnetic vector potential

magnetic flux density

Eq. (2.5-28)

Eq. (2.5-29)

299 792 458; velocity of light (definition)

Eqgs. (6.3-17)—(6.3-21)

Eqgs. (6.3-25)—(6.3-28)

Egs. (6.4-6)—(6.4-9)

electric flux density

Eq. (2.5-18)

Egs. (6.3-47)—(6.3-50)

electric field strength

energy

electric charge

Egs. (2.3-7), (2.3-15)

electric current density

magnetic current density

Eq. (3.2-4)

Eq. (4.2-3)

Eq. (3.2-32)

Eq. (3.2-33)

magnetic field strength

Eq. (6.3-29)

Eq. (6.3-1)

Hamilton function

6.626 075 5 x 1073*, Planck’s constant

1.054 5727 x 107

Eq. (2.4-29)

rest mass

T/At, Eq. (2.2-6)

Eq. (4.2-7)

Eq. (4.4-10)

Eq. (4.2-5)

Eq. (1.1-45)

AF, Eq. (5.5-2)

Egs. (3.2-20), (3.2-54)
(Continued )
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FREQUENTLY USED SYMBOLS

V/Am

magnetic conductivity

arbitrarily large but finite time interval

Eqgs. (3.2-20), (3.2-55)

time variable

arbitrarily small but finite time interval

Eq. (2.5-2)

Egs. (3.2-8), (3.2-10)—(3.2-13)

velocity

Egs. (3.2-20), (3.2-21)

376.730 314; wave impedance of empty
space

1, 2, ...; charge number

Ze?/2K7.297 535 x 1073, Eq. (1.1-45)

ZecAJmoc?, Eq. (1.1-45)

Eq. (5.5-2)

Egs. (2.4-11), (2.4-13), (2.4-14)

4nZa, Eq. (5.5-2)

Eq. (5.5-2)

1/uc?; permittivity

symbol for difference quotient: AF/Ax,
Eq. (1.2-1)

left difference quotient, Eq. (1.2-5)

right difference quotient, Eq. (1.2-4)

symbol for finite difference: x + Ax

x;/cAt, normalized distance; Egs. (2.2-6),
(2.3-1)

t/At, normalized time; Eq. (2.2-6)

Eq. (2.3-18)

Eq. (2.4-32)

ecAtAmox/h; Eqgs. (2.3-2), (3.2-36)

Egs. (2.3-2), (3.2-36)

deo/cAmox; Eqgs. (2.3-2), (3.2-37)

h/moe = 8.89 x 107" for n* and 7™,
Eq. (1.1-45)

Eq. (5.5-2)

4n x 1077, permeability

electric charge density

magnetic charge density

ar, Eq. (5.5-1)

constant, Eq. (2.3-25)

electric conductivity, Eq. (1.1-7)
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FREQUENTLY USED SYMBOLS XXV

\% electric scalar potential

A magnetic scalar potential

— Eq. (2.3-38)

— Eq. (2.1-38)

— Eq. (2.1-8)

- Eq. (2.1-8)

- Eq. (2.1-29), (2.2-26), (2.1-37)
- Eq. (2.1-37)



