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Preface

This text, designed for a second year calculus course, can follow any
standard first year course in one-variable calculus. Its purpose is to cover
the material most useful at this level, to maintain a balance between theory
and practice, and to develop techniques and problem solving skills.

The topics fall into several categories:

Infinite series and integrals

Chapter 1 covers convergence and divergence of series and integrals. It
contains proofs of basic convergence tests, relations between series and
integrals, and manipulation with geometric, exponential, and related series.
Chapter 2 covers approximation of functions by Taylor polynomials, with
emphasis on numerical approximations and estimates of remainders. Chap-
ter 3 deals with power series, including intervals of convergence, expan-
sions of functions, and uniform convergence. It features calculations with
series by algebraic operations, substitution, and term-by-term differentia-
tion and integration.

Vector methods

Vector algebra is introduced in Chapter 4 and applied to solid analytic
geometry. The calculus of one-variable vector functions and its applications
to space curves and particle mechanics comprise Chapter 5.

Linear algebra

Chapter 7 contains a practical introduction to linear algebra in two and
three dimensions. We do not attempt a complete treatment of foundations,
but rather limit ourselves to those topics that have immediate application
to calculus. The main topics are linear transformations in R? and R3, their
matrix representations, manipulation with matrices, linear systems, quad-
ratic forms, and quadric surfaces.

Differential calculus of several variables

Chapter 6 contains preliminary material on sets in the plane and space,
and the definition and basic properties of continuous functions. This is fol-
lowed by partial derivatives with applications to maxima and minima.
Chapter 8 continues with a careful treatment of differentiability and appli-
cations to tangent planes, gradients, directional derivatives, and differentials.
Here ideas from linear algebra are used judiciously. Chapter 9 covers higher
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order partial derivatives, Taylor polynomials, and second derivative tests
for extrema.

Multiple integrals

In Chapters 10 and 11 we treat double and triple integrals intuitively,
with emphasis on iteration, geometric and physical applications, and co-
ordinate changes. In Chapter 12 we develop the theory of the Riemann
integral starting with step functions. We continue with Jacobians and the
change of variable formula, surface area, and Green’s Theorem.

Differential equations

Chapter 13 contains an elementary treatment of first order equations,
with emphasis on linear equations, approximate solutions, and applications.
Chapter 14 covers second order linear equations and first order linear sys-
tems, including matrix series solutions. These chapters can be taken up
any time after Chapter 7.

Complex analysts

The final chapter moves quickly through basic complex algebra to com-
plex power series, shortcuts using the complex exponential function, and
applications to integration and differential equations.

Features

The key points of one-variable calculus are reviewed briefly as needed.

Optional topiecs are scattered throughout, for example Stirling’s Formula,
characteristic roots and vectors, Lagrange multipliers, and Simpson’s Rule
for double integrals.

Numerous worked examples teach practical skills and demonstrate the
utility of the theory.

We emphasize simple line drawings that a student can learn to do himself.

Acknovyledgments

We appreciate the invaluable assistance of our typists, Sara Marcus
and Elizabeth Young, the high quality graphics of Vantage Art Inc., and
the outstanding production job of the Academic Press staff.
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1. Infinite Series and Integrals

1. INFINITE SERIES

One of the most important topics in mathematical analysis, both in theory
and applications, is infinite series. The basic problem is how to add up a sum
with infinitely many terms. At first that seems impossible; life is too short.
However, suppose we look at the sum

Lo giefed o s i
2 4 2

and start adding up terms. We find 1, 3, 1, 4%, 34, - - -, numbers getting closer
and closer to 2. The message is clear: in some limit sense the total of all the
terms is 2.

If we try to add up terms of the sum
I1+1+1+4 ---,

we find 1, 2, 3, 4, - -+, numbers becoming larger and larger. The situation is
hopeless; there is no reasonable total.
Let us now consider in some detail two important infinite sums.

Geometric Series

A geometric series is an infinite sum in which the ratio of any two con-
secutive terms is always the same:
atar+a?+ - +arm4 .- (a#0, r#0).
Let s, denote the sum of all terms up to ar®,
sn=a-+ar+ a2+ -+ + ar.

If r=1, then s,=a4+a+ - +a= (n+1)a, so s,— +o. If
r # 1, there is a simple formula for s,:

1 — pntl
s,.=a(1+r+'r"’+---+r")=a(—ﬁ).

(To check, multiply both sides by 1 — r.) If |r| < 1, then "' ——— 0 asn
increases. Hence a logical choice for the “sum” of the geometric series is
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a/(1 — 7). Butif |r| > 1, then »** grows beyond all bound, and the situation
is hopeless. If » = —1, then s, is alternately a and 0. There is no reasonable
sum in this case cither.

An infinite geometric series
a—+ar~+art+ -« +ar® 4 ---
has the sum a/ (1 — r) if |r| < 1, but no sum if |r| > 1.

Harmonic Series

The series
1 1 1
| e SRR S Rk
2 3 n

is known as the harmonic series. It is not at all obvious, but the sums s, =
1+ 3+ 3%+ -+ 4+ n'increase beyond all bound, so the series has no sum.
To see why, we observe that

1

S1=1>§,

1 1
S2=81+ > - +;=

']

_ 1o1\y_2,1 3
s4 = 8 + > s+ +Z >§+§—§,
4

_ <l+l+l+l>> +(l+l+l+l> _+___
s=at\;Tgt7tg) T g sTs™ 3 22"

[SR N

Similarly, sis > 5/2, sz > 6/2, <+, ss» > (n + 1)/2. Now the sequence of
sums s, increases, and our estimates show s, eventually passes any given
positive number. (This happens very slowly it is true; around 2% terms are
needed before s, exceeds 10 and around 2% terms before it exceeds 20.)

RemARk: Both the geometric series for 0 < » < 1 and the harmonic
series have positive terms that decrease toward zero, yet one series has a sum
and the other does not. This indicates the subtlety we must expect in our
further study of infinite series.

EXERCISES

Find the sum:

1 1 1 1 1 1
1.1+§+§+"‘+'3—9 21_§+3—2—+"'—§
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2 3 6
ek 0
2 3P gntl
5.3+ ~+ 5+ + 6.1— 3+ yt—+ o0 +9®
T2 P2 e 4 4 8 @+ 1)+ @+ 12+ + @+ 1)

Find the sum of the series:

2 2\? 3\3 1 1,1 1
9.1—'5+<g) —<5>+—’ 10'§—Z+§_1_6+_.“

1 1 1 1 1 1

11'§ﬁ+ﬁ+2—12+'” 12.—3'{"%4‘@34‘“'
1 1 1
Borzterar T arar T

cosf |, cos’f  cos®é
W=+t

15. A certain rubber ball when dropped will bounce back to half the height from
which it is released. If the ball is dropped from 3 ft and continues to bounce
indefinitely, find the total distance through which it moves.

16. Trains A and B are 60 miles apart on the same track and start moving toward
each other at the rate of 30 mph. At the same time, a fly starts at train A and
flies to train B at 60 mph. Then it returns to train A, then to B, etc. Use a geo-
metric series to compute the total distance it flies until the trains meet.

17. (cont.) Do Ex. 16 without geometric series.

18. A line segment of length L is drawn and its middle third is erased. Then (step 2)
the middle third of each of the two remaining segments is erased. Then (step 3)
the middle third of each of the four remaining segments is erased, etc. After
step n, what is the total length of all the segments deleted?

s vom,

Interpret the repeating decimals as geometric series and find their sums:
19. 0.11111.-- 20. 0.101010-- -
21. 0.434343- - - 22. 0.185185185- - -.

Show that the series have no sums:

1 1 1 1 1 1 1
23§+Z+6+'8-+ 24-1+§+5+§+"'~
25. Find 7 so large that

1 L 1
T ST I R

26. Aristotle summarized Zeno’s paradoxes as follows:

I can’t go from here to the wall. For to do so, I must first cover half the
distance, then half the remaining distance, then again half of what still
remains. This process can always be continued and can never be completed.

Explain what is going on here.
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2. CONVERGENCE AND DIVERGENCE

It is time to formulate the ideas of Section 1 more precisely.

An infinite series is a formal sum
a + a + as + ---.

Associated with each infinite series is its sequence {s,} of partial sums
defined by

S = @y, 82=a1+a,2, o ..y sn=a1+a,2+...+an.

A series converges to the number S, or has sum S; if lim,, , s, = S. A series
diverges, or has no sum, if lim,., ., s, does not exist.

A series that converges is called convergent; a series that diverges is called
divergent.

Let us recall the meaning of the statement lim,., s, = S. Intuitively, it
means that as N grows larger and larger, the greatest distance [s, — S|, for all
n > N, becomes smaller and smaller. Precisely, for each ¢ > 0, there is a
positive integer N such that |s, — S| < e for all n > N. Let us rephrase the
definition of convergence accordingly.

The infinite series a; + as + a3 + -+ converges to S if for each ¢ > 0,
there is a positive integer N such that

[(ax+as+ -+ +a,) — S| <e

whenever n > N.

Thus, no matter how small ¢, you will get within e of S by adding up enough
terms. For each ¢, the N tells how many terms are ‘“enough’”. Naturally the
smaller e is, the larger N will be. From the way convergence is defined, the
study of infinite series is really the study of sequences of partial sums. Hence we
may apply everything we know about sequences.

We know that inserting, deleting, or altering any finite number of elements
of a sequence does not affect its convergence or divergence. The same holds for
series. For instance, if we delete the first 10 terms of the series a; + as + a3 +
-+-, then we decrease each partial sum s, (for n > 10) by the amount a, +
az + --- + ay. If the original series diverges, then so does the modified series.
If it converges to S, then the modified series converges to S — (a1 + a» +
vun < gl

WARNING: In problems where we must decide whether a given infinite
series converges or diverges, we shall often, without prior notice, ignore or
change a (finite) batch of terms at the beginning. This, we now know, does not
affect convergence.
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Notation

The first term of a series need not be a;. Often it is convenient to start with
ap or with some other ay.
It is also convenient to use summation notation and abbreviate a; + a, +
az+ +++ by Xa=i1as and even simply Y a,. In summation notation, the
partial sums s, of an infinite series > ,—; a, are given by

n
Sn = 2 ag.
k=1

Cauchy Criterion

Recall the Cauchy criterion for convergence of sequences:

A sequence {s,} converges if and only if for each € > 0, there is a positive
integer N such that

|sm — $a| < €

whenever m, n > N.

Thus all elements of the sequence beyond a certain point must be within e of
each other. The advantage of the Cauchy criterion is that it depends only on
the elements of the sequence itself; you don’t have to know the limit of a
sequence in order to show convergence. That’s a great help; sometimes it is
very hard to find the exact limit of a sequence, whereas you may only need to
know that the sequence does indeed converge to some limit.

Let us apply the Cauchy criterion to the partial sums of a series. We simply
observe (for m > n) that

Sm—Sn=(mtat - F+ataut- - +an) - (@+a+ -+ a.)
=an+l+an+2+ cee + .

Cauchy Test An infinite series > a, converges if and only if for each
e > 0, there is a positive integer N such that

Ian+l+an+2+ e +aml < €

whenever m > n > N.

Thus beyond a certain point in the series, any block of consecutive terms, no
matter how long, must have a very small sum.

In the last section we proved the harmonic series diverges by producing
blocks of terms arbitrarily far out in the series whose sum exceeds 3. In other
words, we showed that the Cauchy test fails for e = 3.

Suppose the Cauchy test is satisfied, and take m = n + 1. Then the block
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consists of just one term am., so |a.| < e when m > N. In other words,
am — 0.

Necessary Condition for Convergence If the series ) a, converges, then
lim,,e, a, = 0.

WarNING: This condition is not sufficient for convergence. The har-
monic series 1 + 3 4+ 3 4+ --- diverges even though 1/n —— 0.

Positive Terms

Suppose an infinite series has only non-negative terms. Then its partial
sums form an increasing sequence, s; < s; < 83 < 8¢ < ---. Recall that an
increasing sequence must be one of two types: Either (a) the sequence is
bounded above, in which case it converges; or (b) it is not bounded above, and
it marches off the map to 4 .

We deduce corresponding statements about series:

A series a; + as + a3 + - -+ with a, > 0 converges if and only if there
exists a positive number M such that

ata+ - +a, <M forall n > 1.

Using this fact, we can often establish the convergence or divergence of a
given series by comparing it with a familiar series.

Comparison Test Suppose > a, and > b, are series with non-negative
terms.

(1) If X a. converges and if b, < a, for all n > 1, then }_ b, also con-
verges.

(2) If X a,diverges and if b, > a, for allm > 1, then Y b, also diverges.

Proof: Let s, and ¢, denote the partial sums of Y a, and > b, respec-
tively. Then {s,} and {¢,} are increasing sequences.
(1) Since Y a, converges, s, < .1 a, = M for all n > 1. Since bx < ax
for all k, we have t, < s, for all n. Hence t, < s, < M foralln > 1,s0 > b,
converges.
(2) Since X a, diverges, the sequence {s,} is unbounded. Since b, > ax, we
have t, > s,. Hence {t,} is also unbounded, so > b, diverges.

Note: It is important to apply the Comparison Test correctly. Roughly
speaking, (1) says that “smaller than small is small” and (2) says that
“bigger than big is big”’. However the phrases ‘‘smaller than big” and
“bigger than small”’ contain little useful information.



