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Preface

The impetus for this book is a course that I teach at UCLA — “Mechanisms
of Eukaryotic Transcriptional Regulation”. While this course focuses on
eukaryotic transcription, almost all of the students take it just after com-
pleting a course entitled “Mechanisms of Prokaryotic Transcriptional
Regulation” taught by my colleague Jay Gralla. In Jay’s course, the stu-
dents are introduced to a number of ideas in bacterial transcription that
greatly aid an understanding of eukaryotic transcription. Thus, although
this book focuses on eukaryotes, I have included key ideas and exam-
ples from bacterial transcription.

Like my course, this book is intended for both upper division under-
graduates and graduate students in the molecular life sciences. It should
also be useful to more senior scientists who find that their research has,
either by accident or by design, entered the realm of transcription, and
who therefore require a basic introduction to the field.

This book is by no means a comprehensive account of transcription,
since a complete treatment of this large and rapidly expanding field would
require multiple volumes. Instead, it discusses a few topics that are essen-
tial to an appreciation of the field and illustrates these topics with a num-
ber of carefully selected examples. These topics include the workings of
the basal transcriptional machinery (Chapters 2 and 3), mechanisms of
activation (Chapter 4), the role of chromatin in eukaryotic transcriptional
control including mechanisms of epigenetic regulation (Chapters 5 and
6), and mechanisms of combinatorial control (Chapter 7).

While this book emphasizes unifying ideas, it is only through an
appreciation of the details that underlie these ideas that one gains a deep
understanding of them. Therefore, I have attempted to include enough
examples to help readers feel at home with the concepts and the experi-
mental basis behind them. My goal is to equip readers with the ability
to approach the primary scientific literature with a critical mind.

While most of the conclusions presented in this book are broadly
accepted, transcription is a rapidly evolving field being actively pursued
in thousands of research labs around the world. In an effort to capture
some of the current excitement in the field, I have chosen to cover
certain topics that are not yet completely settled. Rather than attempting
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to present all sides of every issue, I have, in some cases, chosen to take
a particular stance that I believe is supported by the currently available
evidence. Thus, some of the conclusions presented in this book will no
doubt require future revision.

To increase accessibility, each chapter includes essential background
information set off from the main text. These boxes introduce relevant
experimental approaches (e.g., protein chromatography, the use of che-
mical probes, chromatin immunoprecipitation assays, genetic suppression)
and relevant topics in biology and biochemistry (e.g., protein structure
visualization, cooperativity, Drosophila segmentation). In addition, a few
essential terms that are not defined in the main text are explained in the
margins, and a comprehensive list of definitions is provided in the form
of a glossary at the end of the book (terms highlighted in color in the text).

Since it is just as important to understand what we do not know as it
is to understand what we do know, explicit discussions of some of the
most important open questions is presented in side boxes. Furthermore, each
chapter also includes a set of problems, many of which bring up complex
unresolved issues and are intended to stimulate discussion. Possible answers
to these problems are provided at the end of the book. .

Finally, each chapter contains a list of suggested further reading grouped
and ordered to relate to the way that the material is presented in the text.
These are not meant to be comprehensive bibliographies, but instead include
a few articles mainly from the primary research literature that have
influenced my thinking and that have withstood the test of time. In
generating these reading lists, I have left out many equally important and
worthy papers, and for this, I apologize to my colleagues in the scientific
community.

Albert Courey
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1.1 INTRODUCTION

Proteins control nearly everything that
happens in living organisms — they de-
code genetic information; they control cell
shape, cell movement, and segregation
of the chromosomes during cell division;
they determine the localization of every
cellular constituent; and catalyze every
essential metabolic reaction. So if we are to
understand how organisms work, we need
to understand the processes that control
when and where each protein is synthesized.

The production of a protein is a multi-
step process beginning with the synthesis
of RNA (transcription), the processing of
this RNA, and its transport to the ribosomes
where it serves as a template for the syn-
thesis of polypeptides (translation). These
polypeptides must then be correctly modi-
fied and folded to form mature proteins.
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Although the pathway from a gene to a mature protein can be regu-
lated at any step, the most efficient way to regulate gene expression is
to modulate the first step in the pathway since this avoids the costly syn-
thesis of unneeded RNA. Organisms therefore produce an immense set
of catalytic and regulatory factors dedicated to the task of transcribing
genes in an intricately controlled manner. This chapter will introduce the
components of this machinery and discuss the extent to which these com-
ponents have been conserved during the course of evolution. At the same
time, readers will become acquainted with some of the vocabulary needed
to appreciate the exploration of the transcriptional machinery presented
in Chapters 2 through 7.

1.2 THE VOCABULARY OF TRANSCRIPTION

Readers of this book should have had some previous exposure to most of
the terms given in bold face in this section, and to basic ideas about pro-
teins and nucleic acids through a college level course in biochemistry or
molecular biology. Other important terms defined in this section, to which
readers may or may not have previous exposure, will be given in italics.

1.2.1 RNA biogenesis

Transcription, the first step in RNA biogenesis, is the DNA template-
dependent synthesis of RNA, a process that is catalyzed by RNA poly-
merases. Special DNA sequences termed promoters, which are found
near the beginning of each transcribed region, direct these enzymes to
initiate transcription. Transcriptional initiation is followed by transcriptional
elongation, during which polymerase moves along the DNA, catalyzing the
template-directed joining of nucleotides via phosphoester linkages to
form a full-length primary transcript that is complementary in sequence to
one of the DNA strands (the “template strand”). Elongation is, in turn, fol-
lowed by transcriptional termination, in which the polymerase encounters
a termination signal triggering the release of both the transcript and the
DNA from the polymerase.

The job of most RNA molecules is to direct protein synthesis by ser-
ving as a template (mRNA) or as components of a catalytic machine for
decoding this template (tRNA and rRNA). The production of RNA
molecules ready to participate in protein synthesis requires numerous
modifications to the primary transcripts. rRNA and tRNA modification
occurs in all organisms, while mRNA modification (mRNA processing) is
largely restricted to eukaryotes. Eukaryotic mRNA processing includes 5’
capping to produce the mature 5 end of the transcript, splicing to remove
introns, and cleavage and polyadenylation to produce the mature 3’ end.
These processing events begin before synthesis of the primary transcript
is complete (Figure 1.1).
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Figure 1.1 RNA polymerase Il is an mRNA factory. RNA polymerase II (Pol II)
interacts with a myriad of transcription factors and RNA processing factors
to coordinate the process of mRNA biogenesis. (A) Promoter recognition
and transcriptional initiation by Pol II requires general transcription factors.
These proteins form a complex bound to the promoter, which then opens
up the DNA exposing the template strand. Although it is not shown, after
Pol II leaves the promoter and begins elongation, some of the basal factors
remain behind at the promoter, others remain bound to the elongating

Pol 11, and others are released back into solution. (B-D) Early during the
elongation phase, Pol II binds the enzymes that catalyze capping, which
then direct the formation of a "Gppp cap in which 7-methylguanosine is
attached to the 5’ end of the transcript via a 5" to 5’ triphosphate linkage.
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The RNA polymerase responsible for eukaryotic mRNA synthesis (RNA
polymerase II) is sometimes described as an mRNA factory because it
couples transcription to most of the processing steps required for the
maturation of the mRNA (Chapter 3). By binding to capping, splicing,
and cleavage and polyadenylation factors, RNA polymerase II ensures that
appropriate sites in the primary transcript will be efficiently delivered to
the processing machinery while transcription is still occurring (Figure 1.1).

1.2.2 The transcriptional machinery

The transcriptional machinery (or transcriptional apparatus) is the set of pro-
teins required to carry out and regulate transcription. Some features of
the transcriptional machinery are common to all organisms, while others
are specific to one or two of the three domains of life (bacteria, archaea, and
eukaryotes; Box 1.1).

The components of the transcriptional machinery are frequently divided
into two categories: the basal machinery, which is directly responsible for
promoter recognition and transcription, and the regulatory machinery,
which controls the rate at which the basal machinery carries out its job
in a gene-specific manner.

Basal machinery

The basal machinery in each organism includes one or more multisub-
unit core RNA polymerases, which are highly conserved in all cellular life
(Chapter 2). Bacteria and archaea each contain a single core polymerase,
while eukaryotes contain at least three core polymerases (RNA polymerase
I, RNA polymerase II, and RNA polymerase III). Core RNA polymer-
ases are able to catalyze DNA-dependent RNA synthesis, but they are
not able to recognize promoters. In a test tube, they can be made to
initiate transcription at gaps and nicks in double-stranded DNA, but
this is a non-physiological process that does not normally occur in cells.
Thus, the basal machinery also includes additional protein factors that

Figure 1.1 (continued) As elongation proceeds, Pol II binds splicing factors,
which then trigger the formation at each intron of a spliceosome (a large
ribonucleoprotein complex that catalyzes splicing). Pol II also binds the
factors that catalyze cleavage of the transcript at the PolyA signal and the
addition of several hundred adenylate residues to the newly formed 3’ end
(polyadenylation). (E) After Pol II passes the PolyA signal, termination
occurs releasing the transcript and DNA template from Pol II. The splicing
and formation of the mature 3’ end may not be completed until after
termination. The mature mRNA contains the 5" cap and 3" PolyA tail,
which help to stabilize the RNA and are required for efficient export and
translation of the mRNA. In the process of splicing together the exons, the
introns are excised from the transcript and released as lariats.



