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Preface

I became involved in the research of polymer viscoelasticity shortly after I
began to work in the Exxon Chemical Company in 1980, two years after
the landmark papers of Doi and Edwards were published. Even though
there was a great deal of hope and excitement among polymer researchers
regarding the Doi-Edwards theory, at the time I did not foresee that I
would come to accept the theory so completely, as eventually the support-
ing evidence, a great deal of my own research over the years, convinced
me. This book is an account of how the universal viscoelastic phenomena
of nearly monodisperse polymers are explained quantitatively by the Doi—
Edwards (reptation) theory and the extended reptation theory, developed
on the framework of the Doi-Edwards theory. These include the trans-
formation of the characteristic viscoelastic spectrum with molecular-weight
change and/or dilution; the molecular-weight dependence of the zero-shear
viscosity and of the steady-state compliance, and their respective transi-
tion points, M, and M/; the relation between viscoelasticity and diffusion;
the damping function; and the slip-stick melt fracture phenomenon. The
consistently quantitative agreements between theory and experiment led to
the proposition that the number of entanglement strands per cubed tube
diameter (or cubed entanglement distance) be a universal constant, which
is now well supported by a large collection of data (Chapter 13). The ulti-
mate significance of these results is that the basic mean-field assumption
in the Doi-Edwards theory: aL = (R?) (a, the tube diameter; L, the prim-
itive chain length; (R?), mean square end-to-end distance of the polymer
chain) is valid for a (nearly) monodisperse system. Here the mean field is
assumed rather than derived. The proposition of the characteristic length
“a” for an entanglement system is as important as the conceiving of the
Rouse segment twenty five years earlier. From the study of blend-solution
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systems, it is shown in Chapter 11 that the extended reptation theory has
bridged the gap between the Doi-Edwards theory and the Rouse theory.
As shown in the same chapter, the tube dilation effect, which is found
occurring in the long-time region of a binary-blend’s relaxation, indicates
that the mean-field length a = (R?)/L has a dynamic aspect. It is hoped
that the readers will recognize the far-reaching insight of Doi and Edwards’
assumption aL = (R?) in this book.

The first part of this book explains the basics of polymer conforma-
tion, rubber elasticity, viscoelasticity, and chain dynamics (Chapters 1-5).
Knowledge of these basics is not only generally useful but is quite essen-
tial in understanding the molecular theories studied after Chapter 6. This
book starts from a very fundamental level. Each chapter is built upon the
contents of the previous chapters. The elastic-dumbbell model is intro-
duced in Chapter 6 as a prerequisite for the Rouse model, studied in
Chapter 7. Although the final theme of this book is about entanglement
(Chapters 8-13), there are several essential reasons to include the Rouse
model: Firstly, the Rouse theory is the foundation for modern theories of
polymer dynamics and viscoelasticity. Without it this book would be quite
incomplete. Secondly, in spite of its original intention for a dilute poly-
mer solution, the Rouse theory has been generally accepted as valid for
describing the viscoelastic behavior of an entanglement-free polymer melt
system. A further in-depth experimental study supporting the validity of
the Rouse theory is presented in Chapter 11. It is desirable to compare
the Rouse theory with the Doi-Edwards theory and the extended repta-
tion theory so that both the entanglement-free and entanglement regions
can be studied in perspective. It is shown in Chapter 11 that the onset
molecular weight of entanglement is equivalent to the entanglement molec-
ular weight M, determined from the plateau modulus (G = 4pRT/5M,).
Thirdly, the extended reptation theory is developed by incorporating the
Rouse motions in the Doi-Edwards theory. Thus, for discussing this topic,
it is quite essential to know the basic elements of the Rouse model.

This book includes a broad range of studies of polymer viscoelastic
properties: basics, molecular theories, and experiments. It also covers
both the entanglement and entanglement-free regions. Moving from one
region to the other is made by either molecular-weight change or concen-
tration change. The linear viscoelastic behavior is studied in Chapters 8-11;
the nonlinear behavior is studied in Chapter 12. And a newly discovered
law is discussed in Chapter 13. On the other hand, this book is limited
mainly to the studies of polystyrene; viscoelastic-spectrum results of nearly
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monodisperse polystyrene samples and their blends predominantly used in
part of this book (Chapters 10-12) have been obtained and published by
myself. Polystyrene is the most accessible system for study. In view of the
universality existing among the flexible polymers as evidenced in several
important cases, the ideas and theories presented in this book, which have
been consistently and quantitatively tested by the experimental results of
polystyrene, should be applicable to other kinds of polymers. To my knowl-
edge, besides those studies of viscoelastic spectra reported by myself, there
are few other studies of such a quantitative nature. It may strike the reader
that the new theories and experimental spectrum results come mainly from
my own work; this is due to the pioneering aspect of this field, to which I
have devoted years of research, as well as the relative scarcity of parallel
in-depth studies. Nevertheless, the agreement between theory and experi-
ment has been further supported by experimental data obtained by Plazek
and O’Rourke, Kramer et al., Lodge et al., Watanabe et al. and others at
various key points.

In terms of the theories based on the tube assumption (aL = (R?)),
quantitative study is only possible for nearly monodisperse systems, due
to the complexity caused by the tube dilation effect, which occurs in the
system of broad molecular-weight distribution. As a result, the theories
presented in the book may be limited from being directly applied to com-
mercial polymers, whose molecular-weight distribution is broad in general.
However, the theories and analyses presented in this book should be useful
and valuable in many aspects of polymer research and development work.
A unique problem in industry is the slip-stick melt fracture phenomenon
that occurs in extrusion. The basic dynamic processes related to the phe-
nomenon are discussed in Chapter 12. Because of the limited space of
this book, the reader is referred to the original work for an explanation of
the phenomenon in terms of the molecular dynamic processes. Since the
viscoelastic properties of nearly monodisperse polymers can be analyzed
quantitatively in terms of the molecular theories, dynamic mechanical mea-
surement can be used very effectively to study the chain motions that cor-
respond to various length-scales above the Rouse-segment size. Thus, very
rich dynamic information can be obtained from the viscoelastic spectra for
comparing studies with other spectroscopies, such as NMR, dielectric relax-
ation, dynamic light scattering, and neutron spin-echo spectroscopy, etc.
Such interplay among different probing techniques should greatly enhance
the studies and applications of chain dynamics.
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Last but not least, I should mention that important concepts from early
studies of polymer viscoelasticity have not been used and described accord-
ing to their historical developments. Here, I should like to refer to the
review by J. D. Ferry,® which covers the key research works in the period
from 1930 to 1970.

Y.-H. Lin
July 2002

aFerry, J. D., Macromolecules 24, 5237 (1991).
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Chapter 1

Conformation of Polymer Chains

1.1 Introduction

A polymer is formed by connecting many small molecules. For example,
with the help of the catalyst, ethylene CH,=CH, molecules can form long
strings of polyethylene molecules -CH;—CHy-CH,; - - - CHp—. We refer to
CH3=CH,; as the monomer, a structural unit CH,— in the polymer chain as
the chemical segment, and CH,—CHa— as the monomeric segment. A large
number of different kinds of flexible polymers can be formed from different
monomers. The chemical structure of the monomeric segment is generally
referred to as the microstructure of the polymer. If all the monomers are
the same, the formed polymer is called a homopolymer, such as pelystyrene,
poly(a-methyl styrene), etc. If more than two kinds of monomers are used,
the formed polymer can be a random copolymer or a block copolymer. If a
linking agent with multiple arms is added to the monomer in polymeriza-
tion, a polymer with a “star shape” can be formed. The kind of polymer
materials whose viscoelastic properties will be the main subject of study
in this book are the linear flexible polymers, including homopolymers and
random copolymers. As required for making quantitative comparisons with
theories, the samples chosen for study are exclusively well-characterized
nearly monodisperse polymers (M, /M, < 1.1), obtained mainly from
anionic polymerization. When the word “polymer” is used in this book,
it means this kind of polymer if no further specification is made. Although
some of the derived conclusions and concepts from the study can be applied
to star polymers and block copolymers, no discussion of them will be made
in this book.

In a melt or solution, a polymer chain can take up an enormous number
of configurations, as each chemical segment has the probability of pointing
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in many different directions. In addition, because of the thermal fluctuation
effect, the chain configuration is changing continuously. Thus, to describe
the physical properties of the polymer chain, we can only consider the
probability distribution function for the configuration and calculate the
average value. The static properties of the polymer are studied if it is
in the equilibrium state. The changing behavior of chain configuration
with time is generally referred to as polymer chain dynamics. A large por-
tion of this book is devoted to the study of chain dynamics and how the
polymer viscoelastic properties are affected by them. In the first chapter,
we shall study the polymer chain conformation in the equilibrium state.
The basic theoretical assumptions used to treat the problem also play a
fundamental role in the theories developed for describing various static
and dynamic properties of the polymers. In this chapter, we will study
two chain models: the freely jointed chain model and the Gaussian chain
model. The importance of the latter model will become particularly appar-
ent in the later chapters. In these models, the microstructural details are
ignored. It is also understood that when a model chain of these two types
is compared with a real chain, the length of each segment of the model
is much longer than the microstructural length-scale. These chain models
are applicable mainly when the polymer chain is long, i.e. the molecu-
lar weight of the polymer is large. The physical properties that can be
described by the models (such as low-frequency viscoelasticity of a polymer
and the scattering structure factor in the small scattering vector region)
exhibit universal behavior. That is, different kinds of polymers have the
same kind of physical properties regardless of their different microstruc-
ture. Theoretically, this is a consequence of the central limit theorem.!?
The freely jointed chain model and the Gaussian chain model have sim-
plified the problem greatly and have allowed us to grasp the essential and
universal aspects of the physical properties. Before studying these models
in this chapter, we shall review several basic theories in statistics, which
are not only needed here but also in studying the chain dynamic behavior
in the later chapters.

1.2 Probability Distribution Functions, Moments and
Characteristic Functions

Consider a stochastic variable X. If X has a countable set of realiza-
tions, {z;}, where ¢ = 1,2,...,n (n is either a finite integer or n = o0),
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a probability distribution function Py (z) can be defined as
Px(z) =) pid(z — x:) (1.1)
=1

where d(z — ;) is the Dirac delta function (see Appendix 1.A); and p; is
the probability for finding the variable X at z;, which must satisfy the
conditions p; > 0 and £ ;p; = 1. If X can take on a continuous set of
values, such as an interval on the real axis, we assume that there exists a
piecewise continuous function, Px(x), such that the probability that X has
a value in the interval {a < z < b} is given by

Prob(a <z <b) = /bdz Px (). (1.2)

Then Px(z) is the probability distribution for the stochastic variable, and
Px(z)dz is the probability of finding the stochastic variable in the inter-
val £ — x + dz. The probability distribution must satisfy the condition
Px(z) >0 and [ Px(z)dr = 1.

Often we wish to find the probability distribution for another stochastic
variable, Y = H(X), where H(X) is a known function of X. The proba-
bility distribution, Py (y), for the stochastic variable Y, is given by

oo
Prl) = [ dedly - H@)Px(o) (13)
—00
If we can determine the probability distribution function Py (z) for the
stochastic variable X, then we have all the information needed to character-
ize it. This sometimes cannot be obtained. However, in that case, we can
often obtain the moments of X. The nth moment of X is defined by

(@) = /_oo dz " Py (z). (1.4)

The moment, (z), is also called the mean value of X; the combination,
(x?) — (z)?, is referred to as the variance of X; and the standard deviation
of X, ox, is defined by

ox = ({2%) - (2)*)'/2. (1.5)

The moments give us information about the spread and shape of the prob-
ability distribution Py (z). The most important moments are the lower-
order ones since they contain the information about the overall shape of
the probability distribution.
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The characteristic function fx (k), corresponding to the stochastic vari-
able X, is defined by

fx(k) = (exp(ikz)) = /—oo dz exp(ikz) Px ()
= Z(ik)"(—fg—). (1.6)
n=0

The series expansion in the equation above is meaningful only if the higher
moments, (z"), are small so that the series converges. From the series
expansion, we see that it requires all the moments to completely determine
the probability distribution, Px(z). The characteristic function is a con-
tinuous function of k and has the properties that fx(0) = 1, |fx (k)| <1,
and fx(—k) = fx(k) (* denote complex conjugation). The product of two
characteristic function is always a characteristic function. If the character-
istic function is known, the probability distribution, Px(z), is given by the
inverse Fourier transform

Px(z) = i/ dk exp(—ikzx) fx (k). (1.7)
2m J_o
Furthermore, if we know the characteristic function, we can obtain moments
by differentiating:
(@) = lim (i) |2 fx (k) (1.8)
A S e ’

The probability distribution function can be generalized for more than
one stochastic variable. For simplicity, let us consider two stochastic vari-
ables, X and Y. The joint probability of finding X and Y in the interval
T — z +dz and y — y + dy, respectively, is denoted as Px y(z,y)dz dy,
which must satisfy the condition Px y (z,y) > 0 and

/ dl‘/ dy Pxy(z,y) = 1. (1.9)

The reduced probability distribution Px(z) for the stochastic variable X
is defined by

Px(:l:) = /—00 dny,y(IE,y). (1.10)

The reduced probability distribution, Py (y), is obtained in a similar
manner.
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If Z=G(X,Y), where G(X,Y) is a known function of X and Y, the
probability distribution Pz(z) for the stochastic variable Z is given as

P = [ o [* ayste - G Pryey). (D)

Corresponding to the equation above, the characteristic function for the
stochastic variable Z is then

fz(k) = /—00 dz /—00 dz /_00 dyexp(izk)é(z — G(z,y))Px,y(z,v)
= /_oo dz /_00 dyexp(ikG(z,y))Px vy (z,y). (1.12)

If X and Y are two independent stochastic variables, then

Px y(z,y) = Px(x)Py(y). (1.13)

1.3 A Central Limit Theorem?:2

Let us consider a stochastic variable, Yy, which is the deviation from the
average of the arithmetic mean of N statistically independent measurements
of a stochastic variable, X. Yy may be written as

_ (X1+X2+"'+XN)

Yn N

—(Z‘)=Z1+Zz+'--+ZN (1.14)

where

(Xi = ()

Z; =
N

(1.15)
We want to obtain the probability distribution function of Yy, Py n(y).
First, the characteristic function, fz(k; N), for the stochastic variable, Z; x,
can be written as

Fo(k; N) = /_ o; de /_ Z dicexplikz)s (z - W) Px(2)

= /oo dz exp (zk(’”—"N(_zQ) Px (z)

-—00
2 2
k*o%

=132

4o (1.16)



