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Preface

We live in an era in which ever more complex phenomena (e.g., climate change dy-
namics, stock markets, complex logistics, and the Internet) are being described with the
help of mathematical models, frequently referred to as systems. These systems typically
depend on one or more parameters that are assigned nominal values based on the current
understanding of the phenomena. Since, usually, these nominal values are only estimates,
it is important to know how deviations from these values affect the solutions of the sys-
tem and, in particular, whether for some of these parameters even small deviations from
nominal values can have a big impact.

Naturally, it is crucially important to understand the underlying causes and nature
of these big impacts and to do so for neighborhoods of multiparameter configurations.
Unfortunately, in their most general settings, multiparameter deviations are still too com-
plex to analyze fully, and even single-parameter deviations pose significant technical chal-
lenges. Nonetheless, the latter constitute a natural starting point, especially since in
recent years much progress has been made in analyzing the asymptotic behavior of these
single-parameter deviations in many special settings arising in the sciences, engineering,
and economics.

Consequently, in this book we consider systems that can be disturbed, to a varying
degree, by changing the value of a single perturbation parameter loosely referred to as
the “perturbation.” Since in most applications such a perturbation would be small but
unknown, a fundamental issue that needs to be understood is the behavior of the solutions
as the perturbation tends to zero. This issue is important because for many of the most
interesting applications there is, roughly speaking, a discontinuity at the limit, which
complicates the analysis. These are the so-called singularly perturbed problems.

Put a little more precisely, the book analyzes—in a unified way—the general linear and
nonlinear systems of algebraic equations that depend on a small perturbation parameter.
The perturbation is analytic; that is, left-hand sides of the perturbed equations can be
expanded as a power series of the perturbation parameter. However, the solutions may
have more complicated expansions such as Laurent or even Puiseux series. These series
expansions form a basis for the asymptotic analysis (as the perturbation tends to zero).
The analysis is then applied to a wide range of problems including Markov processes,
constrained optimization, and linear operators on Hilbert and Banach spaces. The recur-
rent common themes in the analyses presented is the use of fundamental equations, series
expansions, and the appropriate partitioning of the domain and range spaces.

We would like to gratefully acknowledge most valuable contributions from many col-
leagues and students including Amie Albrecht, Eitan Altman, Vladimir Ejov, Vladimir
Gaitsgory, Moshe Haviv, Jean-Bernard Lasserre, Nelly Litvak, (the late) Charles Pearce,
and Jago Korf. Similarly, the institutions where we have worked during the long period
of writing, University of South Australia, Inria, and Flinders University, have also gen-
erously supported this effort. Finally, many of the analyses reported here were carried
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out as parts of Discovery and International Linkage grants from the Australian Research
Council.

Konstantin E. Avrachenkov, Jerzy A. Filar, and Phil G. Howlett
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Chapter 1

Introduction and
Motivation

1.1 = Background

In a vast majority of applications of mathematics, systems of govermng equanons include
parameters that are assumed to have known values. Of course, in practice, these values
may be known only up to a certain level of accuracy. Hence, it is essential to understand
how deviations from their nominal values may affect solutions of these governing equa-
tions. Naturally, there is a desire to study the effect of all possible deviations. However, in
its most general setting, this is a formidable challenge, and hence structural assumptions
are usually required if strong, constructive results are to be explicitly derived.

Frequently, parameters of interest will be coefficients of a matrix. Therefore, it is nat-
ural to begin investigations by analyzing matrices with perturbed elements. Historically,
there was a lot of interest in understanding how such perturbations affect key properties
of the matrix. For instance, how will the eigenvalues and eigenvectors of this matrix be
affected?

Perhaps the first comprehensive set of answers was supplied in the, now classical, trea-
tise of Kato [99]. Indeed, Kato’s treatment was more general and covered the analysis
of linear operators as well as matrices. However, Kato [99] and a majority of other re-
searchers have concentrated their effort on the perturbation analysis of the eigenvalue
problem.

In this book we shall study a range of problems that is more general than spectral anal-
ysis. In particular, we will be interested in the behavior of solutions to perturbed linear
and polynomial systems of equations, perturbed mathematical programming problems,
perturbed Markov chains and Markov decision processes, and some corresponding exten-
sions to operators in Hilbert and Banach spaces.

In the same spirit as Kato, we focus on the case of analytic perturbations. The lat-
ter have the structural form where the perturbed data specifying the problem can be
expanded as a power series in terms of first, second, and higher orders of deviations multi-
plied by corresponding powers of an auxiliary perturbation variable. When that variable
tends to zero the perturbation dissipates and the problem reduces to the original, unper-
turbed, problem. Nonetheless, the same need not be true of the solutions that are of most
interest to the researchers studying the system. These can exhibit complex behaviors that
involve discontinuities, singularities, and branching.

Indeed, since the 1960s researchers in various disciplines have studied particular
manifestations of the complex behavior of solutions to many important problems.
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For instance, perturbed mathematical programs were studied by Pervozvanski and
Gaitsgori [126], and the study of perturbed Markov chains was, perhaps, formally initi-
ated by Schweitzer [137]. It is this, not uncommon, complexity of the limiting behavior
of solutions that stimulated the present book.

1.2 « Raison d’Etre and Exclusions

Imagine that the perturbed matrix mentioned in the previous section had the form
A=A+D, (1.1)

where A is a matrix of nominal coefficient values, A is a matrix of perturbed data, and
D is the perturbation itself. There are numerous publications devoted to this subject (see,
e.g., the books by Stewart and Sun [147] and Konstantinov et al. [103] and the survey by
Higham [80]). However, without any further structural assumptions on D, asymptotic
analysis as the norm of D tends to zero is typically only possible when the rank of the
perturbed matrix A is the same as the rank of A. Roughly speaking, this corresponds to
the case of what we later define to be a regular perturbation. Generally, in such a case so-
lutions of the perturbed problem tend to solutions of the original unperturbed problem.

In this book we wish to explain some of the complex asymptotic behavior of solutions
such as discontinuity, singularity, and branching. Typically, this arises when the rank of
the perturbed matrix A is different from the rank of A. For instance, consider the simple
system of linear equations

. 1 1 x 1
A":[ 1+¢ 1426 ][x;]:[O] (1.2)

Clearly, A is of the form (1.1) since we can write

> 11 0 0 ]
iearo=[ 110 2]

Now, for any & # 0, the inverse of A exists and can be written as

. I[ 142 —1 I 1 = [ 2 0
-1 _ _ _
4 _g[—4—$ 1 ]—E[—4 1 ]+ —1 o]

Hence, the unique solution of (1.2) has the form of Laurent series

LM A

Despite the fact that the norm of D tends to 0 as ¢ — 0, we see that % diverges. The
singular part of the Laurent series indicates the direction along which % diverges as ¢ — 0.

The above example indicates that a singularity manifests itself in the series expansion
of 2 solution. This phenomenon is common in a wide range of interesting mathematical
and applied problems and lends itself to rigorous analysis if we impose the additional
assumption that the perturbed matrix is of the form

Ale)=Ay+eA, + %A, +..., (1.3)

where the above power series is assumed to be convergent in some neighborhood of ¢ = 0.
Hence it is natural to call this particular type of perturbation an analytic perturbation.
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Consequently, it is also natural to consider a singular perturbation to be one where solu-
tions to the perturbed problem are not analytic functions with respect to the perturbation
parameter €.

It will be seen that with the above analytic perturbation assumption, a unified treat-
ment of both the regular and singular perturbations is possible. Indeed, the approach
we propose has been inspired by Kato’s systematic analysis of the perturbed spectrum
problem but applied to a much wider class of problems. Thus, while Kato’s motivating
problem is captured by the eigenvalue equation

A(e)x(e) = A(e)x(¢), (1.4)

our motivating problem is the asymptotic behavior of solutions to the perturbed system

of equations
f(x, E) =0,

where f(x,¢) can be a system of linear or polynomial equations. In the linear case this
reduces to
L(e)x(e)=c(e).

In particular, if L(¢) has an inverse for e # 0, and sufficiently small, then we investigate
the properties of the perturbed inverse operator L™!(¢) (or matrix-valued function A~!(¢)
in the finite dimensional case). For example, we rely on the fact that A™!(¢) can always be
expanded as a Laurent series

1 1
A"l(s):?B_5+-~-+;B_ +By+eB +... . (1.5)

The preceding system equation f(x,¢) = 0 arises as a building block of solutions to
many practical problems. In particular, there is an enormous number of problems that
are formulated as either linear or nonlinear mathematical programs. Hence a fundamental
question that arises concerns the stability (or instability) of a solution when the problem
is slightly perturbed.

Perhaps surprisingly, this can be a very difficult question. Even in the simplest case
of linear programming, standard Operations Research textbooks discuss only the most
straightforward cases and scrupulously avoid the general issue of how to analyze the effect
of a perturbation when the whole coefficient matrix is also affected.

The next example (taken from [126]) illustrates that even in the “trivial” case of linear
programming the effect of a small perturbation can be “nontrivial.” Consider the simple
optimization problem in two variables

78 %
S.t. X + x, = 1,
A+, + (A+2e)x, = 1+¢,

x>0, x,>0.

It is clear that for any ¢ > O there is a unique (and hence optimal) feasible solution at
x* =1, x¥ = 0. However, when ¢ = 0, the two equality constraints coincide, the set of
feasible solutions becomes infinite, and the maximum is attained at %, =0, x, = 1.

More generally, techniques developed in this book permit us to describe the asymp-
totic behavior of solutions! to a generic, perturbed, mathematical program:

'The word solution is used in a broad sense at this stage. In some cases the solution will, indeed, be a global
optimum, while in other cases it will be only a local optimum or a stationary point.
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L gi(x,e)=0,i=1,...,m, (MP(¢))

h(x,e)<0,j=1,...,p,

where x € R”,¢ € [0,00), and f,g;’s, b}- ’s are functions on R” x [0,00). We will be
especially concerned with characterizing solutions, x*(¢), of (MP(e)) as functions of the
perturbation parameter, ¢. This class of problems is closely related to the well-established
topics of sensitivity or postoptimality, or parametric analysis of mathematical programs
(see Bonnans and Shapiro [29]). However, our approach covers both the regularly and
singularly perturbed problems and thereby resolves instances such as that illustrated in
the above simple linear programming example.

Other important applications treated here include perturbed Markov chains and de-
cision processes and their applications to Google PageRank and the Hamiltonian cycle
problems.

Let us give an idea of applicability of the perturbation theory to the example of Google
PageRank. PageRank is one of the principal criteria according to which Google sorts
answers to a user’s query. It is a centrality ranking on the directed graph of web pages
and hyperlinks. Let A be an adjacency matrix of this graph. Namely, 4;; =1 if there is a
hyperlink from page i to page j, and 4;; = 0 otherwise. Let D be a diagonal matrix whose
diagonal elements are equal to the out-degrees of the vertices. The matrix L =D —A is
called the graph Laplacian. If a page does not have outgoing hyperlinks, it is assumed
that it points to all pages. Also, let v” be a probability distribution vector which defines
preferences of some group of users, and let ¢ be some regularization parameter. Then,
PageRank can be defined by the following equation:

n=cev' [L+eA]"'D.

Since the graph Laplacian L has at least one zero eigenvalue, L + A is a singular pertur-
bation of L, and its inverse can be expressed in the form of Laurent series (1.5). This
application is studied in detail in Chapter 6.

Consequently, the book is intended to bridge at least some of the gap between the
theoretical perturbation analysis and areas of applications where perturbations arise nat-
urally and cause difficulties in the interpretation of “solutions” which require rigorous
and yet pragmatic resolution. To achieve this goal, the book is organized as an advanced
textbook rather than a research monograph. In particular, a lot of expository material has
been included to make the book as self-contained as practicable. In the next section, we
outline a number of possible courses that can be taught on the basis of the material cov-
ered. Nonetheless, the book also contains sufficiently many new, or very recent, results
to be of interest to researchers involved in the study of perturbed systems.

Finally, it must be acknowledged that a number of, clearly relevant, topics have been
excluded so as to limit the scope of this text. These include the theories of perturbed or-
dinary and partial differential equations, stochastic diffusions, and perturbations of the
spectrum. Most of these are well covered by several existing books such as Kato [99],
Baumgirtel [22], O’Malley [125], Vasileva et al. [153], Kevorkian and Cole [102], and
Verhulst [156]. Singular perturbations of Markov processes in continuous time are well
covered in the book of Yin and Zhang [162]. Elementwise regular perturbations of ma-
trices are extensively treated in the books of Stewart and Sun [147] and Konstantinov
et al. [103].

Although the question of numerical computation is an extremely important aspect
of perturbation analysis, we shall not undertake per se a systematic study of this topic.



