WINNER OF JOLT PRODUCTIVITY AWARD

WHY PROGRANS FAIL

A GUIDE TO SYSTEMATIC DEBUGGING
| SECOND EDITION

Why Programs Fail

A Guide to Systematic
Debugging

Second Edition

Andreas Zeller

AMSTERDAM e BOSTON e HEIDELBERG e LONDON
NEW YORK e OXFORD e PARIS e SAN DIEGO
SAN FRANCISCO e SINGAPORE e SYDNEY ¢ TOKYO

ELSEVIER

Morgan Kaufmann Publishers is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS

Morgan Kaufmann Publishers is an imprint of Elsevier
30 Corporate Drive, Suite 400
Burlington, MA 01803

This book is printed on acid-free paper. ()
Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, scanning, or otherwise, without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.
You may also complete your request on-line via the Elsevier homepage (bttp.//elsevier.com), by
selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted.

ISBN-13:978-0-12-374515-6

For information on all Morgan Kaufmann publications,
visit our Website at www.books.elsevier:.com

Printed in the United States
0809 10 11 12 1098765 4 3 21

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID = o0 Foundation

International

Why Programs Fail

Foreword

In Federalist 51,James Madison wrote: “If men were angels, no government would
be necessary.” If he lived today, Madison might have written: “If software devel-
opers were angels, debugging would be unnecessary.” Most of us, however, make
mistakes, and many of us even make errors while designing and writing software.
Our mistakes need to be found and fixed, an activity called debugging that origi-
nated with the first computer programs. Today every computer program written
is also debugged, but debugging is not a widely studied or taught skill. Few books,
beyond this one, present a systematic approach to finding and fixing programming
errors.

Be honest: Does debugging seem as important, difficult, or worthy of study as
writing a program in the first place? Or, is it just one of those things that you need
to do to finish a project? Software developers though spend huge amounts of time
debugging—estimates range up to half or more of their workdays. Finding and fixing
bugs faster and more effectively directly increases productivity and can improve
program quality by eliminating more defects with available resources. Preventing
mistakes in the first place would be even better, but no one has yet found the
technique to prevent errors, so effective debugging will remain essential.

Improved programming languages and tools can supplant, but not eliminate,
debugging, by statically identifying errors and by dynamically detecting invariant
violations. For example, the type system in modern languages such as Java and
C# prevents many simple mistakes that slip by C programmers. Moreover, these
languages’ runtime bounds checks stop a program when it strays out of bounds,
which may be billions of instructions before the error manifests itself. Unfortunately,
there are countless ways in which a program can go wrong, almost all of which
languages and tools cannot detect or prevent. For example, in recent years there
has been considerable work in verifying sequences of operations in a program.Tools
can ensure that a file is opened before a program reads it, but they cannot check
that the correct file is accessed or that the program properly interprets its contents.
If either mistake occurs, someone still must debug the program to understand the
error and determine how to fix it.

In addition, debugging can be an enjoyable activity that shares the thrill of the
hunt and chase found in a good detective novel or video game. On the other hand,
a protracted, unsuccessful search for a bug in your code quickly loses its charm,
particularly when your boss is asking repeatedly about your (lack of) progress.
Learning to debug well is essential to enjoying software development.

This book can teach you how to debug more effectively. It is a complete and
pragmatic overview of debugging, written by a talented researcher who has devel-
oped many clever ways to isolate bugs. It explains best practices for finding and
fixing errors in programs, ranging from systematically tracking error reports, repro-
ducing failures, observing symptoms, isolating the cause, and correcting defects.

Xvi Foreword

Along with basic techniques and commonly used tools, the book also explores the
author’s innovative techniques for isolating minimal input to reproduce an error
and for tracking cause and effect through a program.

Studying this book will make you a better programmer. You will be able to find
and fix errors in your code (and your colleague’s code) faster and more effectively,
a valuable skill that will enable you to finish projects earlier and produce programs
with fewer defects. Also, if you read between the lines you will learn how to write
code that is more easily tested and debugged, which further increases your ability
to find and correct defects. And thinking hard about what can go wrong with your
program can help you avoid mistakes in the first place, so you have less to debug.

James Larus
Microsoft Research

Preface

This is a book about bugs in computer programs—how to reproduce them, how
to find them, and how to fix them such that they do not occur. This book teaches
a number of techniques that allow you to debug any program in a systematic, and
sometimes even elegant, way. Moreover, the techniques can be widely automated,
which allows you to let your computer do most of the debugging. Questions this
book addresses include:

How can I reproduce failures faithfully?

How can I isolate what is relevant for the failure?
How does the failure come to be?

How can I fix the program in the best possible way?
How can I learn from mistakes to prevent future ones?

Once you understand how debugging works,you will not think about debugging
in the same way. Instead of seeing a wild mess of code, you will think about causes
and effects, and you will systematically set up and refine hypotheses to track failure
causes. Your insights may even make you set up your own automated debugging
tool. All of this allows you to spend less time on debugging, which is why you are
interested in automated debugging in the first place, right?

How This Book Came to Be Written

Although I work as a researcher, I have always considered myself a programmer,
because this is how I spend most of my time. During programming, I make mis-
takes, and I have to debug my code. I would like to say that I am some type of
tiberprogrammer—that 1 never make mistakes—but I am only human, just like
anyone else.

During my studies, I have learned that an ounce of prevention is more than worth
a pound of cure. I have learned many ways of preventing mistakes. Today, I teach
them to my students. However, in striving for prevention we must not forget about
the cure. If we were doctors, we could not simply refuse treatment just because our
patient had not taken all possible preventive measures.

So, rather than designing yet another ultimate prevention, I have sought good
cures. This same pragmatic attitude has been adopted by other researchers around
the globe. I am happy to report that we have succeeded. Today, a number of
advanced debugging techniques are available that widely automate the debugging
process.

These techniques not only automate debugging, but also turn debugging from
a black art into a systematic and well-organized discipline that can be taught just
like any software engineering topic. Thus, I created a course on automated debug-
ging and reworked the lecture notes into a book. The result is what you see
before you.

xvii

xviii

Preface

What Is New in this Second Edition

In the past three years, the field of automated debugging has made tremendous
advances. This second edition treats some of the most exciting novelties.

A new chapter on “Learning from Mistakes.” In Chapter 16,1 describe recent
work on leveraging change and bug databases, to detect automatically where
previous defects were located, and how to predict where the next ones will be.

New insights on how to report problems. Chapter 2 now includes insights
from a ground-breaking study by Bettenburg et al., who have surveyed what
developers need most in a problem report.

Reproducing crashes. In Chapter 4,1 present the Cdd and ReCrash tools, which
allow for automatic reproduction of crashes while requiring little to no overhead.
This addresses one of the most pressing problems in debugging.

New material on tracking origins. Chapter 9 now discusses the WHYLINE tool
for JAVA,allowing expert developers to ask questions on why specific things hap-
pened during execution, or why they did not (e.g., “Why did this error message
occur?”).

Updated and extended discussions all over the book. Along with several
updates on the state of the art, I have also fixed all errors reported by readers,
and revised and updated all the material.

Despite the additions, the numbering of chapters, sections, and exercises is virtually
unchanged. Thus, references to items in the first edition should also apply to this
second edition (which is helpful if you use this book in a course).

Audience

This book is intended for computer professionals, graduate students, and advanced
undergraduates who want to learn how to debug programs systematically and with
automated support. The reader is assumed to be familiar with programming and
manual testing, either from introductory courses or work experience.

What This Book Is and What It Is Not

This book focuses on the cure of bugs—that is, the act of isolating and fixing the
defect in the program code once a failure has occurred. It only partially covers pre-
venting defects. Many other books are available that provide an in-depth treatment
of this topic. In fact,one might say that most of computer science is concerned with
preventing bugs. However, when prevention fails, there is need for a cure, and that
is what this book is about.

Overview of Content

This book is divided into 16 chapters and an Appendix. Chapters 1, 6, and 12 are
prerequisites for later chapters.

Preface

At the end of each chapter, you will find a section called “Concepts,” which
summarizes the key concepts of the chapter. Some of these concepts are denoted
“How To.” These summarize recipes that can be easily followed (they are also listed
in the Contents). Furthermore, each chapter ends with practical exercises, for ver-
ifying your knowledge, and a “Further Reading” section. This book is organized as
follows.

Chapter 1: How Failures Come To Be

Your program fails. How can this be? The answer is that the programmer created
a defect in the code. When the code is executed, the defect causes an infection in
the program state, which later becomes visible as a failure. To find the defect, one
must reason backward, starting with the failure. This chapter defines the essential
concepts when talking about debugging, and hints at the techniques discussed
subsequently—hopefully whetting your appetite for the remainder of this book.

Chapter 2: Tracking Problems

This chapter deals with the issue of how to manage problems as reported by users—
how to track and manage problem reports, how to organize the debugging process,
and how to keep track of multiple versions. This information constitutes the basic
framework in which debugging takes place.

Chapter 3: Making Programs Fail

Before a program can be debugged, we must set it up such that it can be fested —that
is, executed with the intent to make it fail. In this chapter, we review basic testing
techniques, with a special focus on automation and isolation.

Chapter 4: Reproducing Problems

The first step in debugging is to reproduce the problem in question—that is, to create
a test case that causes the program to fail in the specified way. The first reason is to
bring it under control, such that it can be observed. The second reason is to verify
the success of the fix. This chapter discusses typical strategies for reproducing an
operating environment, including its history and problem symptoms.

Chapter 5: Simplifying Problems

Once we have reproduced a problem, we must simplify it—that is, we must find
out which circumstances are not relevant to the problem and can thus be omitted.
This process results in a test case that contains only the relevant circumstances.
In the best case, a simplified test case report immediately pinpoints the defect. We
introduce delta debugging, an automated debugging method that simplifies test
cases automatically.

Chapter 6: Scientific Debugging
Once we have reproduced and simplified a problem, we must understand how the
failure came to be. The process of arriving at a theory that explains some aspect of

Xix

Preface

the universe is known as scientific method. 1t is the appropriate process for obtain-
ing problem diagnostics. We introduce basic techniques of creating and verifying
hypotheses, creating experiments, conducting the process in a systematic fashion,
and making the debugging process explicit.

Chapter 7: Deducing Errors

In this chapter, we begin exploring the techniques for creating hypotheses that
were introduced in Chapter 6. We start with deduction techniques—reasoning from
the abstract program code to the concrete program run. In particular, we present
program slicing, an automated means of determining possible origins of a vari-
able value. Using program slicing, one can effectively narrow down the number of
possible infection sites.

Chapter 8: Observing Facts

Although deduction techniques do not take concrete runs into account, observation
determines facts about what has happened in a concrete run. In this chapter, we
look under the hood of the actual program execution and introduce widespread
techniques for examining program executions and program states. These techniques
include classical logging, interactive debuggers, and postmortem debugging—as
well as eye-opening visualization and summarization techniques.

Chapter 9: Tracking Origins

Once we have observed an infection during debugging, we need to determine its
origin. We discuss omniscient debugging,a technique that records an entire execu-
tion history such that the user can explore arbitrary moments in time without ever
restarting the program. Furthermore, we explore dynamic slicing,a technique that
tracks the origins of specific values.

Chapter 10: Asserting Expectations

Observation alone is not enough for debugging. One must compare the observed
facts with the expected program behavior. In this chapter, we discuss how to auto-
mate such comparisons using well-known assertion techniques. We also show how
to ensure the correct state of important system components such as memory.

Chapter 11: Detecting Anomalies

Although a single program run can tell you quite a bit, performing multiple runs for
purpose of comparison offers several opportunities for locating commonalities and
anomalies—anomalies that frequently help locate defects. In this chapter, we dis-
cuss how to detect anomalies in code coverage and anomalies in data accesses. We
also show how to infer invariants from multiple test runs automatically, in order
to flag later invariant violations. All of these anomalies are good candidates for
identification as infection sites.

Preface

Chapter 12: Causes and Effects

Deduction, observation, and induction are all useful in finding potential defects.
However, none of these techniques alone is sufficient in determining a failure
cause. How does one identify a cause? How does one isolate not just @ cause but
the actual cause of a failure? This chapter lays the groundwork for techniques aimed
at locating failure causes systematically and automatically.

Chapter 13: Isolating Failure Causes

This chapter is central to automating most of debugging. We show how delta debug-
ging isolates failure causes automatically—in program input,in the program’s thread
schedule, and in program code. In the best case, the reported causes immediately
pinpoint the defect.

Chapter 14: Isolating Cause—Effect Chains

This chapter presents a method of narrowing down failure causes even further. By
extracting and comparing program states, delta debugging automatically isolates
the variables and values that cause the failure, resulting in a cause-effect chain of
the failure: For example, “variable x was 42; therefore p became null, and thus the
program failed.”

Chapter 15: Fixing the Defect

Once we have understood the failure’s cause-effect chain, we know how the failure
came to be. However, we must still locate the origin of the infection—that is, the
actual location of the defect. In this chapter, we discuss how to narrow down the
defect systematically—and, having found the defect, how to fix it.

Chapter 16: Learning from Mistakes

At the end of each debugging session,one wonders how the defect could have come
to be in the first place. We discuss techniques to collect,aggregate,and locate defect
information; techniques to predict where the next defects will be; and what to do
to prevent future errors.

Appendix: Formal Definitions
For the sake of readability, all formal definitions and proofs have been grouped in
the Appendix.

Glossary
The Glossary defines important terms used throughout the book.

Bibliography
The bibliography presents a wide range of sources of further reading in the topics
covered by the text.

XXi

Xxii

Preface

Supplements, Resources, and Web Extensions

Much of the material covered in this book has never been discussed in a text-
book before. The later chapters have not been widely tested in practice, and
like any book on an evolving field, this one will benefit from more refinement
and from further work. In other words, this book is full of bugs, and I wel-
come any comments on it. You can write to me care of Morgan Kaufmann, or
email me at zeller@whyprogramsfail.com. There is also a Web page at bttp.//www.
whyprogramsfail.com for late-breaking information and updates (read: errata).

Advice for Instructors

I have used this book for five graduate courses on automated debugging. Each
course consisted of approximately 16 lectures of 60 to 90 minutes each. Essen-
tially, there was one lecture per chapter. The exercises stem from these courses
(and their exams). I have also used parts of the book for a number of tutorials
on debugging, as well as for inclusion in programming and software engineering
courses. For your convenience, my presentation slides for these courses are avail-
able in Keynote and Powerpoint format. Instructions on how to access them are
available at bttp.//www.whyprogramsfail.com.

If you prefer to make your own slides, all of the original illustrations for this book
are also available at this site.

Advice for Readers
Typographics

To keep things simple, most examples in this book use simple input/output
mechanisms—that is, the command line and the console. In all of these exam-
ples, typewriter font stands for program output, and bold typewriter font
for user input. The command-line prompt is denoted by a dollar sign ($), and the
cursor by an underscore (_). The following is a simple example. The user invokes
the hello program, which prints the text Hello, world! on the console.

$./hello
Hello, world!
$

Programming Environment

The concepts and techniques discussed in this book do not depend on a particular
programming environment or operating system. To illustrate the techniques,though,
I frequently use command-line tools, typically from the Linux/UNIX community. In
addition to saving space, this is a matter of simplicity; these command-line tools pro-
vide a functional core similar to that found in almost all sophisticated programming
environments. Therefore, you should have no trouble transferring the examples to
your personal programming workbench.

Preface

ACKNOWLEDGMENTS

Many people have had a part in the development of this book. I would like to
thank everybody who reviewed drafts of the manuscript or parts of it: Philipp
Bouillon, Holger Cleve, David Cok, Michael Ernst, David Evans, Clint Jeffery, Dieter
Kranzlmiiller, Jens Krinke, Raimondas Lencevicius, Bil Lewis, Ben Liblit, Christian
Lindig, Edu Metz, Robert Muth, Stephan Neuhaus, Jeff Offutt, Kerstin Reese, Zoltan
Somogyi, Peter Wei3gerber, Thomas Zimmermann, and the students of the Auto-
mated Debugging courses at Saarland University, the University of Washington,
and ETH Ziirich. Philipp Bouillon, Silvia Breu, Holger Cleve, Andreas Leitner, and
Martin Mehlmann also helped with the conception of the exercises. Thanks to all
readers who reported bugs in the first edition, in particular Martin Burger, Roland
[llig, and Yong-Wu Wang. Christa Preisendanz of dpunkt Verlag and Tim Cox of
Morgan Kaufmann Publishers were most helpful. And finally, my family has
supported me enormously while writing this book—it’s great to have you with me.
Have fun debugging!

For the Snark’s a peculiar creature, that won't
Be caught in a commonplace way.

Do all that you know, and try all that you don't:
Not a chance must be wasted to-day!

— LEwis CARROLL
The Hunting of the Snark (1876)

xxiii

Contents

CHAPTER

CHAPTER

1

1.1
1.2
1.3
1.4

1.5
1.6
1.7

1.8
1.9

2.5
2.6
2.7

Foreword

Preface

LostinTime and Space ...,
From Failures to Fixes,
1.4.1 Track the Problemooiiiiia.
1.4.2 Reproduce the Failure....................oooviii....
1.4.3 Automate and Simplify the Test Case
1.4.4 Find Possible Infection Origins
1.4.5 Focus on the Most Likely Origins.....................
1.4.6 Isolate the Origin of the Infection....................
1.4.7 Correctthe Defect..................cooooiiiiiii..
Automated Debugging Techniques
Bugs, Faults, or Defects?,
87) 1 (el o o] 1 O T TTT LT e R B SR A ¥
How to debug a programcccccoviiiiinni..
TOOIS © .
Farther REAING,: ... ooswommmmessass s e ss e oo pmpimmansanns s 55453 5
EXCICISES . s ;s onnasssommiomasng 55556 6 55 655 Aaaeiigos bha iossasss

Tracking Problems

Oh! All'These Problems.................ooiiiiiiiiiiinn...
Reporting Problems ...
2.2.1 Problem Facts..............oooiiiiiiiiiii
2.2.2 Product Factscoiiiiiiiiiiiiiiiiia
2.2.3 Querying Facts Automatically
Managing Problems. ...
Classifying Problemso,
241 SeVEIiY ...t
2,42 PriOTitY .o
2:4.3 TAENUACE coninsannsnisinsessssisanmmimmmsminassssioensss
244 COMMENLS ..ottt
2.4.5 Notification
Processing Problems
Managing Problem Tracking
Requirements as Problemsoo

25
25
26
26
28
29
31
32

vi

Contents

2.8
29
2.10
2.1

2.12
2.13

CHAPTER 3
3.1
3.2
3.5

3.4
35
3.0
3.7
3.8
39

3.10
3.11

Managing Duplicates ...
Relating Problems and Fixescoooiiiiii...
Relating Problems andTestsocoiiiiiiiiiii...
CONEEPLS oivvosmmnnasessssvse sy s esmesFaGarss 55345555450 4aa5
How to obtain the relevant problem information
How to write an effective problem report
How to organize the debugging process
How to track requirements
How to keep problem tracking simple
How to restore released versions
How to separate fixes and features...........................
How to relate problems and fixes
How to relate problems and tests, make a problem

report obsolete.
MOOLS: s sre-smzsmpmemarancs 558 5 5 4 5 ¢ 8 9 S ORARIGITHE 34 48 345552838 ¥ £ 5 & DO
Furthef REAdING ciiivviserviisnimmmiiasmossss5555555554 8 4280ims
EXErciseso

Making Programs Fail

Testing for Debuggingcooiiiiiiiiiiiiiiiiiiiii..,
Controlling the Programcooiiiiiiiiii...
Testing at the Presentation Layer
3.3.1 Low-Level Interactionoooiiiiiinn..
3.3.2 System-Level Interactionoo
3.3.3 Higher-Level Interaction
3.3.4 AssessingTest Results..................................
Testing at the Functionality Layer..............................
Testing at the Unit LAVEL:, cvoswmmomanmmimnssws ssssas s v s s s
Isolating Units.oiuii e
Designing for Debugging ...
Preventing Unknown Problems
CONCEPLS ..o e
Houw to test for debugg@ingcc.coeiiiiii...
How to automate program execution
Houw to test at the presentation layer
How to test at the functionality layer........................
Houw to test at the unit layer
How to isolate a unitc.cociiiiiiiiiiiian.
How to design for debugging
How to prevent unknown problems
TOOIS ..
PUEthEr REAAIMIE covvusssiessssinissmsmmmmmmammssssinnss s s
BXCICISEE s nomunniind dsissns sniissniumsesdemmsmmens 5928 ¢ ¢ o o 5 mnsiiie

45
45

45
46
46

49
49
50
53
53
55
55
56
57
59
63
66
69
70
70

71
72
72
73

Contents vii

CHAPTER 4 Reproducing Problems 75
4.1 The FirstTask in Debugging.................................... 75
4.2 Reproducing the Problem Environment 76
4.3 Reproducing Program Execution.............................. 78

4.3.1 Reproducing Data 80
4.3.2 Reproducing User Interaction 80
4.3.3 Reproducing Communications 82
4.3.4 ReproducingTime 83
4.3.5 Reproducing Randomness 83
4.3.6 Reproducing Operating Environments............... 84
4.3.7 Reproducing Schedules 86
4.3.8 Physical Influences 88
4.3.9 Effects of Debugging Tools.................cccccvn... 89
4.4 Reproducing System Interaction 90
4.5 Focusing on UNitscooiiiiiiiiiiiiiiian... 91
4.5.1 Setting Up a Control Layer............................ 92
4.5.2 A Control Example 92
453 Mock Objects ..o 95
4.5.4 Controlling More Unit Interaction.................... 97
4.6 Reproducing Crashes... 97
4.7 CONCEPLS .ottt 101
How to reproduce a problem 101
How to reproduce the problem environment 101
How to reproduce the problem execution 101
How to reproduce unit bebavior 101
How to Mock objectscoooiiiiiiiiiiiii.. 101
How to reproduce a crash 101
4.8 TOOIS. conmmmmmprnmmrsss 51558535 LaAimAESHERAaA R 55 1T o s o snoarscisaers 101
4.9 Further Reading i, 102
EXErcises 102

CHAPTER 5 Simplifying Problems 105
5.1 Simplifying the Problem 105
5.2 The Gecko BUgAThONcoooiiiiiiiiiiiiiiii i 106
5.3 Manual Simplification 109
5.4 Automatic Simplificationl 110
5.5 A Simplification Algorithm 112
5.6 Simplifying User Interaction 117
5.7 Random Input Simplified 118
5.8 Simplifying Faster...............oooooiiiiiiiiiii 119

9:8.1 CACKHEAE .. i::isureiiimmsimimimmnrinsessssnes smommmemmmssaes 119
582 StopEarly ... 120
5.8.3 Syntactic Simplification 120

5.8.4 Isolate Differences, Not Circumstances 121

viii

Contents

5.10
5.11

CHAPTER 6
6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8

6.9
6.10

6.11

CHAPTER 7
7.1
7.2

CONCEPLS icviviamnns i 55555555 85 aasomnpaeneaaaeisessissensio s 123
How to simplify a testcase.................................... 123
How to automate simplification 123
Houw to speed up automatic simplification 123
TOOIS . oo 123
FOIHEF REAAMTD o ssenss 05 28 somasamanrmmonssess s 55556 6 5 ¥ o ivw 123
25 (o3] - J P 124
Scientific Debugging 129
How to Become a Debugging Gurucooovaeen... 129
The'Scientific Methodcovovnimimssnmmesssvsasssssssses 130
Applying the Scientific Method 132
6.3.1 Debugging sample—Preparation 132
6.3.2 Debugging sample—Hypothesis 1................... 132
6.3.3 Debugging sample—Hypothesis 2................... 133
6.3.4 Debugging sample—Hypothesis 3................... 133
6.3.5 Debugging sample—Hypothesis 4................... 133
Explicit Debuggingcoooviiiiiiiiiiiiii 134
Keepifig A4 LOBDOOK uvwmis cxssssssnsssssnssmmopsmmmmmmamaiss i s e 135
Debugging Quick-and-Dirtyccooiiiiiii i, 136
Algorithmic Debugging. ..., 137
Deriving a Hypothesisooooiiiiiiiiiiiiiiii ... 140
6.8.1 The Description of the Problem 140
6.8.2 TheProgram Code............c.ooiiiiiiiiiiineiiaa.. 140
6.8.3 TheFailing Runccoiiiiiiiiiiiiinnns 140
6.8.4 Alternate RUNS, 141
6.8.5 Earlier Hypothesescoiiiiiiiiiaaa... 141
Reasoning about Programs................ooiiviiieiinaeaann. 142
[€707 [of = 0. 1 U S PP 144
Houw to isolate a failure cause 144
How to understand the problem at hand 144
How to avoid endless debugging sessions 144
Houw to locate an error in a functional or logical

DFOBHAM 55565 5555 45 ¢ v sowsammuemomamorss s34 5555 § 3 ¥ v amgmsesms 144
How to debug quick-and-dirty................................ 144
How to derive a Bypothesisccoooeiiiiiieiiiaa .. 144
How to reason about programs 144
Further Readingcoooiiiiiiiiiii i 144
EXCICISES ...ttt e 145
Deducing Errors 147
Isolating Value Origins.oviriiiiiiiiiiiiiiiaein. 147

Understanding Control Flow ..., 148

