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Preface

Deterministic Calculus has been proved extremely useful in the last few hun-
dred years for describing the dynamics laws for macro-objects, such as plan-
ets, projectiles, bullets, etc. However, at the micro-scale, the picture looks
completely different, since at this level the classical laws of Newtonian me-
chanics cease to function “‘normally”. Micro-particles behave differently, in
the sense that their state cannot be determined accurately as in the case of
macro-objects; their position or velocity can be described using probability
densities rather than exact deterministic variables. Consequently, the study
of nature at the micro-scale level has to be done with the help of a special
tool, called Stochastic Calculus. The fact that nature at a small scale has a
non-deterministic character makes Stochastic Calculus a useful and important
tool for the study of Quantum Mechanics.

In fact, all branches of science involving random functions can be ap-
proached by Stochastic Calculus. These include, but they are not limited to,
signal processing, noise filtering, stochastic control, optimal stopping, elec-
trical circuits, financial markets, molecular chemistry, population evolution,
etc.

However, all these applications assume a strong mathematical background,
which takes a long time to develop. Stochastic Calculus is not an easy theory
to grasp and, in general, requires acquaintance with probability, analysis and
measure theory. This fact makes Stochastic Calculus almost always absent
from the undergraduate curriculum. However, many other subjects studied at
this level, such as biology, chemistry, economics, or electrical circuits, might be
more completely understood if a minimum knowledge of Stochastic Calculus
is assumed.

The attribute informal, present in the title of the book, refers to the fact
that the approach is at an introductory level and not at its maximum math-
ematical detail. Many proofs are just sketched, or done “naively” without
putting the reader through a theory with all the bells and whistles.

The goal of this work is to informally introduce elementary Stochastic
Calculus to senior undergraduate students in Mathematics, Economics and
Business majors. The author’s goal was to capture as much as possible of the
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spirit of elementary Calculus, which the students have already been exposed
to in the beginning of their majors. This assumes a presentation that mimics
similar properties of deterministic Calculus as much as possible, which facili-
tates the understanding of more complicated concepts of Stochastic Calculus.

The reader of this text will get the idea that deterministic Calculus is just
a particular case of Stochastic Calculus and that Ito’s integral is not a too
much harder concept than the Riemannian integral, while solving stochastic
differential equations follows relatively similar steps as solving ordinary dif-
ferential equations. Moreover, modeling real life phenomena with Stochastic
Calculus rather than with deterministic Calculus brings more light, detail and
significance to the picture.

The book can be used as a text for a one semester course in stochastic
calculus and probabilities, or as an accompanying text for courses in other
areas such as finance, economics, chemistry, physics, or engineering.

Since deterministic Calculus books usually start with a brief presentation
of elementary functions, and then continue with limits, and other properties
of functions, we employed here a similar approach, starting with elementary
stochastic processes, different types of limits and pursuing with properties
of stochastic processes. The chapters regarding differentiation and integration
follow the same pattern. For instance, there is a product rule, a chain-type rule
and an integration by parts in Stochastic Calculus, which are modifications of
the well-known rules from elementary Calculus.

In order to make the book available to a wider audience, we sacrificed rigor
and completeness for clarity and simplicity, emphasizing mainly on examples
and exercises. Most of the time we assumed maximal regularity conditions for
which the computations hold and the statements are valid. Many complicated
proofs can be skipped at the first reading without affecting later understand-
ing. This will be found attractive by both Business and Economics students,
who might get lost otherwise in a very profound mathematical textbook where
the forest’s scenery is obscured by the sight of the trees. A flow chart indicat-
ing the possible order the reader can follow can be found at the end of this
preface.

An important feature of this textbook is the large number of solved prob-
lems and examples which will benefit both the beginner as well as the advanced
student.

This book grew from a series of lectures and courses given by the author
at Eastern Michigan University (USA), Kuwait University (Kuwait) and Fu-
Jen University (Taiwan). The student body was very varied. I had math,
statistics, computer science, economics and business majors. At the initial
stage, several students read the first draft of these notes and provided valuable
feedback, supplying a list of corrections, which is far from exhaustive. Finding
any typos or making comments regarding the present material are welcome.
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White noise
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Jumps of the Brownian motion during time interval At
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Probability distribution function of X
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Transition density function
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Gamma function

Beta function

Poisson process

Waiting time for Poisson process

Interarrival time for Poisson process

The minimum between 71 and 79 (= min{7,72})
The maximum between 71 and 75 (= max{7;,72})
Sequence superior limit (= sup,,>; )

Sequence inferior limit (= inf,>; 7,)

Drift rate

Volatility, standard deviation

Partial derivative with respect to xy

n-dimensional Euclidean space
Buclidean norm (= /a{+ -+ + 22)
Laplacian of f

The characteristic function of A

The L%-norm (= \/fff(t)Q dt)

Squared integrable functions on [0, 7]

Functions twice differentiable with second derivative continuous
Functions with compact support of class C?

Bessel process

The mean square estimator of (;
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Chapter 1

A Few Introductory Problems

Even if deterministic Calculus is an excellent tool for modeling real life prob-
lems, however, when it comes to random exterior influences, Stochastic Cal-
culus is the one which can allow for a more accurate modeling of the problem.
In real life applications, involving trajectories, measurements, noisy signals,
etc., the effects of many unpredictable factors can be averaged out, via the
Central Limit Theorem, as a normal random variable. This is related to the
Brownian motion, which was introduced to model the irregular movements of
pollen grains in a liquid.

In the following we shall discuss a few problems involving random pertur-
bations, which serve as motivation for the study of the Stochastic Calculus
introduced in next chapters. We shall come back to some of these problems
and solve them partially or completely in Chapter 11.

1.1 Stochastic Population Growth Models

Exponential growth model Let P(t) denote the population at time ¢. In
the time interval At the population increases by the amount AP(t) = P(t +
At)— P(t). The classical model of population growth suggests that the relative
percentage increase in population is proportional with the time interval, i.e.

AP(t)
P(t)

=rAt,

where the constant r > 0 denotes the population growth. Allowing for in-
finitesimal time intervals, the aforementioned equation writes as

dP(t) = rP(t)dt.

This differential equation has the solution P(t) = Pye™, where P is the initial
population size. The evolution of the population is driven by its growth rate
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K

Figure 1.1: (a) Noisy population with exponential growth. (b) Noisy population
with logistic growth.

r. In real life this rate is not constant. It might be a function of time ¢, or even
more general, it might oscillate irregularly around some deterministic average
function a(t):

re = a(t) + “noise”.

In this case, r; becomes a random variable indexed over time t. The associated
equation becomes a stochastic differential equation

dP(t) = (a(t) + “noise” ) P(t)dt. (1.1.1)

Solving an equation of type (1.1.1) is a problem of Stochastic Calculus, see
Fig. 1.1(a).

Logistic growth model The previous exponential growth model allows the
population to increase indefinitely. However, due to competition, limited space
and resources, the population will increase slower and slower. This model
was introduced by P.F. Verhust in 1832 and rediscovered by R. Pearl in the
twentieth century. The main assumption of the model is that the amount
of competition is proportional with the number of encounters between the
population members, which is proportional with the square of the population

size
dP(t) = rP(t)dt — kP(t)*dt. (1.1.2)
The solution is given by the logistic function
PK
P(t) 0=

- P(] + ([{ — Po)(f_"'f' :

where K = r/k is the saturation level of the population. One of the stochastic
variants of equation (1.1.2) is given by

dP(t) = rP(t)dt — kP(t)%dt + B(“noise” ) P(t),



