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Preface to Volume 11

If it is bad luck to title a book “Volume I”, as Gian-Carlo Rota says in Indiscreet
Thoughts, it is not good luck to promise a Volume II in the introduction, either.
For the ten years after the appearance of Classical Recursion Theory in 1989, 1
was torn between the easy choice of publishing a new edition of the first volume
with an amended introduction, and the much harder choice of completing the
second volume. Now that an apparently diverging sequence of successive drafts
has finally come to a limit, I can release both a new edition of the first volume
and a second volume.

In this last moment dedicated to thanksgivings, my first thoughts go to
Laura. She entered my shattered life in 1986, putting its pieces back together
and providing an inexhaustible flow of joy, happiness and understanding. She
whipped me back into line, whenever 1 strayed from what she rightly considered
the correct path. As I already wrote on her copy of Volume I, this book is also
hers.

As the previous one, much of my last decade has been enlightened by visits
to different parts of the world, made possible by a number of friends. First
and foremost, Anil Nerode and Richard Shore, thanks to whom Ithaca became
my second home for three years and thirteen summers. Then John Crossley in
Melbourne in 1988, Dongping Yang in Beijing in 1992 and 1995, Gerald Sacks
in Boston in 1995, 1996 and 1998, Antonin Kucera in Prague and Cristian
Calude in Auckland in 1996, and Ding Decheng in Nanjing in 1998. Last but
not least, Andrea Sorbi, whose selfless work as coordinator of a Human Capital
and Mobility Project provided the funds for a number of European trips.

Even more than for the first volume, I owe a great debt to the colleagues
who have read parts of the manuscript and have provided corrections and sug-
gestions: Klaus Ambos-Spies, Francesco Bergadano, Cristian Calude, Barry
Cooper, Ugo de’ Liguoro, Lavinia Egidi, Dick Epstein, Matt Giorgi, Lane
Hemachandra, Carl Jockusch, Martin Kummer, Antonin Kucera, Steffen
Lempp, Bob Lubarsky, Wolfgang Merkle, Franco Montagna, Michael Morley,
Dan Osherson, Alan Selman, Mark Simpson, Ted Slaman, Bob Soare, Andrea
Sorbi, Frank Stephan, Helmut Veith and Yue Yang.
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viii Preface

Whatever vision informs the book has been inspired by a handful of people,
whose thoughts have provided and sustained inspiration through the years:
Barry Cooper, Juris Hartmanis, Carl Jockusch, Georg Kreisel, Anil Nerode,
Richard Platek and Gerald Sacks. Their acquaintance has been an undeserved
honor, their teaching a much appreciated gift.

However, the book would never have been completed without the massive
help of the Magnificent Four whose expectations have set my standards: Rod
Downey, Bill Gasarch, André Nies and Richard Shore. As friends, they have
provided a constant stimulus and encouragement, much needed in the face of
hurdles and doubts. As colleagues, they have dedicated an enormous amount
of time and energy to help me with explanations and proofs. If this volume
does not displease them, I will be delighted.

As Beaumarchais once noticed, books are for authors as babies are for
mothers: conceived in pleasure, carried with fatigue and given birth in pain.
No words could better describe an enterprise that literally took away half of
my life, nor better introduce the subject of dedication. Because, if I look back
at my forty-eight years, in them I see only my parents more constant than this
book. As a first child, I shared most of their life together: perhaps not as close
and near as they would have liked, perhaps closer and nearer than they might
have guessed. The deadline of their fiftieth anniversary on September 17th,
1999 has provided a major drive towards the completion of the book: another
item to add to a long list of valuable parental offerings, which neither spoken
nor printed words are able to match.

Ithaca - Torino
1989 - 1999
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Introduction to Volume 11

We obviously keep in Volume II the same notation and conventions used in
Volume 1. For the reader’s convenience, we reproduce here the parts of the
Introduction to Volume I which are relevant to Volume II.

What is in the Book

Recall that Classical Recursion Theory is the study of real numbers or,
equivalently, functions over the natural numbers. The basic methods of
analysis of the real numbers used in Volumes I and II are:

Hierarchies. A hierarchy is a stratification of a class of reals built from below,
starting from a subclass that is taken as primitive (either because well
understood, or because already previously analyzed), and obtained by
iteration of an operation of class construction.

Degrees. Degrees are equivalence classes of reals under given equivalence rela-
tions, that identify reals with similar properties. Once a class of reals has
been studied and understood, degrees are usually defined by identifying
reals that look the same from that class point of view.

As might be imagined the two methods are complementary: first a class is
analyzed in terms of intrinsic properties, for example by appropriately strati-
fying it in hierarchies, and then the whole structure of real numbers is studied
modulo that analysis with the appropriate notion of degrees induced by the
given class.

The previous complementarity is exploited throughout Volume II. In Chap-
ter VIII we provide a study of polynomial time computable functions and
of the induced notion of polynomial time degrees (similar notions of degrees
could be introduced for most complexity classes studied in Chapter VIII). In
Chapters IX, X and XIV we provide a study of the recursively enumerable
sets and of the induced notion of enumeration degrees, while in Chapters

1



2 Introduction

XII and XIII we provide a study of the arithmetical sets and of the induced
notion of arithmetical degrees.

We now outline the skeleton of Volume II in more detail, referring to the
introductions of the various chapters for more details. Chapters VII and VIII
resume the analysis of the fundamental objects in Recursion Theory, the recur-
sive sets and functions, and provide a microscopic picture of them. We start
in Chapter VII with an abstract study of the complexity of computation of
recursive functions. Then in Chapter VIII we attempt to build from below
the world of recursive sets and functions that was previously introduced in
just one go. A number of subclasses of interest from a computational point of
view are introduced and discussed, among them: the polynomial time (or
space) computable functions which provide an upper bound for the class of
feasibly computable functions (as opposed to the abstractly computable ones);
the elementary functions, which are the smallest known class of functions
closed under time (deterministic or not) and space computations; the primi-
tive recursive functions, which are those computable by the ‘for’ instruction
of programming languages like PASCAL, i.e. with a preassigned number of it-
erations (as opposed to the recursive functions, computable by the ‘while’ in-
struction, which permits an unlimited number of iterations); the eg-recursive
functions, which are those provably total in Peano Arithmetic.

Chapters IX and X return to the treatment of recursively enumerable sets.
A good deal of information on their structure was already gathered in Chapter
II1, but here a systematic study of the structures of both the lattice of recur-
sively enumerable sets and of the partial ordering of recursively enumer-
able degrees is undertaken. Special tools for their treatment are introduced,
most prominent among them being the priority method, a constructive vari-
ation of the Baire Category method.

Chapter XI deals with limit sets, also known as Ag sets, which are limits
of recursive functions. They are a natural formalization of the notion of sets
for which membership can be determined by effective trials and errors, unlike
recursive sets (for which membership can be effectively determined), and re-
cursively enumerable sets (for which membership can be determined with at
most one mistake, by first guessing that an element is not in the set, and then
changing opinion if it shows up during the generation of the set).

Chapter XII deals with arithmetical sets, which are definable in the lan-
guage of First-Order Arithmetic. As a special tool for their treatment we intro-
duce the method of arithmetical forcing, which can be combined with the
Baire Category and the priority methods. Chapter XIII studies the structure
of the continuum w.r.t. the notion of relative arithmetical definability provided
by the arithmetical degrees, along the lines of Chapter V. Similarly, Chapter
XIV studies the structure of the continuum w.r.t. a notion of relative recursive
enumerability provided by the enumeration degrees.



