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PREFACE

Group theory provides the natural mathematical language to formulate symmetry
principles and to derive their consequences in Mathematics and in Physics. The
“special functions” of mathematical physics, which pervade mathematical analysis,
classical physics, and quantum mechanics, invariably originate from underlying
symmetries of the problem although the traditional presentation of such topics may
not expressly emphasize this universal feature. Modern developments in all
branches of physics are putting more and more emphasis on the role of symmetries
of the underlying physical systems. Thus the use of group theory has become
increasingly important in recent years. However, the incorporation of group theory
into the undergraduate or graduate physics curriculum of most universities has not
kept up with this development. At best, this subject is offered as a special topic
course, catering to a restricted class of students! Symptomatic of this unfortunate
gap is the lack of suitable textbooks on general group-theoretical methods in
physics for all serious students of experimental and theoretical physics at the
beginning graduate and advanced undergraduate level. This book is written
to meet precisely this need.

There already exist, of course, many books on group theory and its applications
in physics. Foremost among these are the old classics by Weyl, Wigner, and Van der
Waerden. For applications to atomic and molecular physics, and to crystal lattices
in solid state and chemical physics, there are many elementary textbooks
emphasizing point groups, space groups, and the rotation group. Reflecting the
important role played by group theory in modern elementary particle theory, many
current books expound on the theory of Lie groups and Lie algebras with emphasis
suitable for high energy theoretical physics. Finally, there are several useful general
texts on group theory featuring comprehensiveness and mathematical rigor written
for the more mathematically oriented audience. Experience indicates, however, that
for most students, it is difficult to find a suitable modern introductory text which is
both general and readily understandable.

This book originated from lecture notes of a general course on Mathematical
Physics taught to all first-year physics graduate students at the University of
Chicago and the Illinois Institute of Technology. The author is not, by any stretch of
the imagination, an expert on group theory. The inevitable lack of authority and
comprehensiveness is hopefully compensated by some degree of freshness in
pedagogy which emphasizes underlying principles and techniques in ways easily
appreciated by students. A number of ideas key to the power and beauty of
the group theoretical approach are highlighted throughout the book, e.g., in-
variants and invariant operations; projection operators on function-, vector-, and
operator-spaces; orthonormality and completeness properties of representa-
tion functions,..., etc. These fundamental features are usually not discussed or
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emphasized in the more practical elementary texts. Most books written by experts,
on the other hand, either are “over the head” of the average student; or take many
conceptual points for granted, thus leaving students to their own devices. I make a
special effort to elucidate the important group theoretical methods by referring
frequently to analogies in elementary topics and techniques familiar to students
from basic courses of mathematics and physics. On the rich subject of Lie groups,
key ideas are first introduced in the context of simpler groups using easily
understandable examples. Only then are they discussed or developed for the more
general and more complex cases. This is, of course, in direct contrast to the
deductive approach, proceeding from the most abstract (general) to the more
concrete (specific), commonly found in mathematical texts. I believe that the
motivation provided by concrete examples is very important in developing a real
understanding of the abstract theory. The combination of inductive and deductive
reasoning adopted in our presentation should be closer to the learning experience of
a student (as well as to the process of generalization involved in the creation of the
theory by the pioneers) than a purely deductive one.

This book is written primarily for physicists. In addition to stressing the physical
motivations for the formalism developed, the notation adopted is close to that of
standard physics texts. The main subject is, however, the mathematics of group
representation theory, with all its inherent simplicity and elegance. Physical
arguments, based on well-known classical and quantum principles, are used to
motivate the choice of the mathematical subjects, but not to interfere with their
logical development. Unlike many other books, I refrain from extensive coverage of
applications to specific fields in physics. Such diversions are often distracting for the
coherent presentation of the mathematical theory; and they rarely do justice to the
specific topics treated. The examplés on physical applications that I do use to
illustrate advanced group-theoretical techniques are all of a general nature
applicable to a wide range of fields such as atomic, nuclear, and particle physics.
They include the classification of arbitrary quantum mechanical states and general
scattering amplitudes involving particles with spin (the Jacob-Wick helicity
formalism), multipole moments and radiation for electromagnetic transitions

in any physical system,..., etc. In spite of their clear group-theoretical origin
and great practical usefulness, these topics are rarely discussed in texts on group
theory.

Group representation theory is formulated on linear vector spaces. I assume the
reader to be familiar with the theory of linear vector spaces at the level required for a
standard course on quantum mechanics, or that of the classic book by Halmos.
Because of the fundamental importance of this background subject, however, and in
order to establish an unambiguous set of notations, I provide a brief summary of
notations in Appendix I and a systematic review of the theory of finite dimensional
vector spaces in Appendix II. Except for the most well-prepared reader, I
recommend that the material of these Appendices be carefully scanned prior to the
serious studying of the book proper. In the main text, I choose to emphasize clear
presentation of underlying ideas rather than strict mathematical rigor. In particular,
technical details that are needed to complete specific proofs, but are otherwise of no
general implications, are organized separately into appropriate Appendices.

The introductory Chapter encapsulates the salient features of the group-
theoretical approach in a simple, but non-trivial, example—discrete translational
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symmetry on a one dimensional lattice. Its purpose is to illustrate the flavor and the
essence of this approach before the reader is burdened with the formal development
of the full formalism. Chapter 2 provides an introduction to basic group theory.
Chapter 3 contains the standard group representation theory. Chapter 4 highlights
general properties of irreducible sets of vectors and operators which are used
throughout the book. It also introduces the powerful projection operator tech-
niques and the Wigner-Eckart Theorem (for any group), both of which figure pro-
minently in all applications. Chapter 5 describes the representation theory of the
symmetric (or permutation) groups with the help of Young tableaux and the asso-
ciated Young symmetrizers. An introduction to symmetry classes of tensors is
given, as an example of useful applications of the symmetric group and as prepara-
tion for the general representation theory of classical linear groups to be discussed
later. Chapter 6 introduces the basic elements of representation theory of contin-
uous groups in the Lie algebra approach by studying the one-parameter rotation
and translation groups. Chapter 7 contains a careful treatment of the rotation
group in three-dimensional space, SO(3). Chapter 8 establishes the relation be-
tween the groups SO(3) and SU(2), then explores several important advanced topics:
invariant integration measure, orthonormality and completeness of the D-functions,
projection operators and their physical applications, differential equations satisfied
by the D-functions, relation to classical special functions of mathematical physics,
group-theoretical interpretation of the spherical harmonics, and multipole radia-
tion of the electromagnetic field. These topics are selected to illustrate the power
and the breadth of the group-theoretical approach, not only for the special case of
the rotation group, but as the prototype of similar applications for other Lie groups.
Chapter 9 explores basic techniques in the representation theory of inhomogeneous
groups. In the context of the simplest case, the group of motions (Euclidean group)
in two dimensions, three different approaches to the problem are introduced: the Lie
algebra, the induced representation, and the group contraction methods. Relation
of the group representation functions to Bessel functions is established and used to
elucidate properties of the latter. Similar topics for the Euclidean group in three
dimensions are then discussed. Chapter 10 offers a systematic derivation of the
finite-dimensional and the unitary representations of the Lorentz group, and the
unitary representations of the Poincaré group. The latter embodies the full
continuous space-time symmetry of Einstein’s special relativity which underlies
contemporary physics (with the exception of the theory of gravity). The relation
between finite-dimensional (non-unitary) representations of the Lorentz group and
the (infinite-dimensional) unitary representations of the Poincaré group is discussed
in detail in the context of relativistic wave functions (fields) and wave equations.
Chapter 11 explores space inversion symmetry in two, and three-dimensional
Euclidean space, as well as four-dimensional Minkowski space. Applications to
general scattering amplitudes and multipole radiation processes are considered.
Chapter 12 examines in great detail new issues raised by time reversal invariance and
explores their physical consequences. Chapter 13 builds on experience with the
various groups studied in previous chapters and develops the general tensorial
method for deriving all finite dimensional representations of the classical linear
groups GL(m; C), GL(m; R), U(m, n), SL(m; C), SU(m, n), O(m, n; R), and SO(m, n; R).
The important roles played by invariant tensors, in defining the groups and in
determining the irreducible representations and their properties, is emphasized.
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It may be noticed that, point and space groups of crystal lattices are con-
spicuously missing from the list of topics described above. There are two reasons for
this omission: (i) These groups are well covered by many existing books emphasizing
applications in solid state and chemical physics. Duplication hardly seems
necessary; and (ii) The absence of these groups does not affect the coherent devel-
opment of the important concepts and techniques needed for the main body of the
book. Although a great deal of emphasis has been placed on aspects of the theory of
group representation that reveal its crucial links to linear algebra, differential
geometry, and harmonic analysis, this is done only by means of concrete examples
(involving the rotational, Euclidean, Lorentz, and Poincare groups). I have refrained
from treating the vast and rich general theory of Lie groups, as to do so would
require a degree of abstraction and mathematical sophistication on the part of the
reader beyond that expected of the intended audience. The material covered here
should provide a solid foundation for those interested to pursue the general
mathematical theory, as well as the burgeoning applications in contemporary
theoretical physics, such as various gauge symmetries, the theory of gravity,
supersymmetries, supergravity, and the superstring theory.

When used as a textbook, Chapters 1 through 8 (perhaps parts of Chapter 9
as well) fit into a one-semester course at the beginning graduate or advanced
undergraduate level. The entire book, supplemented by materials on point groups
and some general theory of Lie groups if desired, is suitable for use in a two-semester
course on group theory in physics. This book is also designed to be used for self-
study. The bibliography near the end of the book comprises commonly available
books on group theory and related topics in mathematics and physics which can be
of value for reference and for further reading.

My interest in the theory and applitation of group representations was developed
during graduate student years under the influence of Loyal Durand, Charles
Sommerfield, and Feza Giirsey. My appreciation of the subject has especially been
inspired by the seminal works of Wigner, as is clearly reflected in the selection of
topics and in their presentation. The treatment of finite-dimensional represen-
tations of the classical groups in the last chapter benefited a lot from a set of
informal but incisive lecture notes by Robert Geroch.

It is impossible to overstate my appreciation of the help I have received from
many sources which, together, made this book possible. My colleague and friend
Porter Johnson has been extremely kind in adopting the first draft of the manuscript
for field-testing in his course on mathematical physics. I thank him for making many
suggestions on improving the manuscript, and in combing through the text to
uncover minor grammatical flaws that still haunt my writing (not being blessed with
a native English tongue). Henry Frisch made many cogent comments and
suggestions which led to substantial improvements in the presentation of the crucial
initial chapters. Debra Karatas went through the entire length of the book and made
invaluable suggestions from a student’s point of view. Si-jin Qian provided valuable
help with proof-reading. And my son Bruce undertook the arduous task of typing
the initial draft of the whole book during his busy and critical senior year of high
school, as well as many full days of precious vacation time from college. During the
period of writing this book, I have been supported by the Illinois Institute of
Technology, the National Science Foundation, and the Fermi National Accelerator
Laboratory.
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Finally, with the deepest affection, I thank all members of my family for their
encouragement, understanding, and tolerance throughout this project. To them, I
dedicate this book.

Chicago WKT
December, 1984
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CHAPTER 1
INTRODUCTION

Symmetry, Quantum Mechanics, Group Theory, and Special Functions in a Nutshell

The theory of group representation provides the natural mathematical language
for describing symmetries of the physical world. Although the mathematics of group
theory and the physics of symmetries were not developed simultaneously—as in the
case of calculus and mechanics by Newton—the intimate relationship between the
two was fully realized and clearly formulated by Wigner and Weyl, among others,
before 1930. This close connection is most apparent in the framework of the new
quantum mechanics. But much of classical physics, involving symmetries of one
kind or another, can also be greatly elucidated i;y the group-theoretical approach.
Specifically, the solutions to equations of classical mathematical physics and “state
vectors” of quantum mechanical systems both form linear vector spaces. Symme-
tries of the underlying physical system require distinctive regularity structures in
these vector spaces. These distinctive patterns are determined purely by the group
theory of the symmetry and are independent of other details of the system.

Therefore, in addition to furnishing a powerful tool for studying new mathemati-
cal and physical problems, the group theoretical approach also adds much insight
to the wealth of old results on classical “special functions” of mathematical physics
previously derived from rather elaborate analytic methods. Since the 1950’s, the
application of group theory to physics has become increasingly important. It now
permeates every branch of physics, as well as many areas of other physical and life
sciences. It has gained equal importance in exploring “internal symmetries” of
nature (such as isotopic spin and its many generalizations) as in elucidating
traditional discrete and continuous space-time symmetries.

In this introductory chapter we shall use a simple example to illustrate the close
relationship between physical symmetries, group theory, and special functions. This
is done before entering the formal development of the next few chapters, so that the
reader will be aware of the general underlying ideas and the universal features of the
group theoretical approach, and will be able to see through the technical details
which lie ahead. As with any “simple example”, the best one can do is to illustrate the
basic ideas in their most transparent setting. The full richness of the subject and the
real power of the approach can be revealed only after a full exposition of the theory
and its applications.

Since we shall try to illustrate the full scope of concepts with this example, notions
of classical and quantum physics as well as linear vector spaces and Fourier analysis
are all involved in the following discussion. For readers approaching this subject for
the first time, a full appreciation of all the ideas may be more naturally attained by



