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Preface to the Second Edition

This is a revised and extended version of my 1995 elementary introduction
to partial differential equations. The material is essentially the same except
for three new chapters. The first (Chapter 8) is about non-linear equations
of first order and in particular Hamilton-Jacobi equations. It builds on the
continuing idea that PDEs, although a branch of mathematical analysis, are
closely related to models of physical phenomena. Such underlying physics
in turn provides ideas of solvability. The Hopf variational approach to the
Cauchy problem for Hamilton—-Jacobi equations is one of the clearest and
most incisive examples of such an interplay. The method is a perfect blend
of classical mechanics, through the role and properties of the Lagrangian and
Hamiltonian, and calculus of variations. A delicate issue is that of identifying
“uniqueness classes.” An effort has been made to extract the geometrical
conditions on the graph of solutions, such as quasi-concavity, for uniqueness
to hold.

Chapter 9 is an introduction to weak formulations, Sobolev spaces, and
direct variational methods for linear and quasi-linear elliptic equations. While
terse, the material on Sobolev spaces is reasonably complete, at least for a
PDE user. It includes all the basic embedding theorems, including their proofs,
and the theory of traces. Weak formulations of the Dirichlet and Neumann
problems build on this material. Related variational and Galerkin methods,
as well as eigenvalue problems, are presented within their weak framework.
The Neumann problem is not as frequently treated in the literature as the
Dirichlet problem; an effort has been made to present the underlying theory
as completely as possible. Some attention has been paid to the local behavior
of these weak solutions. hoth for the Dirichlet and Neumann problems. While
efficient in terms of existence theory, weak solutions provide limited informa-
tion on their local behavior. The starting point is a sup bound for the solutions
and weak forms of the maximum principle. A further step is their local Holder
continuity.

An introduction to these local methods is in Chapter 10 in the framework
of DeGiorgi classes. While originating from quasi-linear elliptic equations,
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these classes have a life of their own. The investigation of the local and bound-
ary behavior of functions in these classes, involves a combination of methods
from PDEs, measure theory, and harmonic analysis. We start by tracing them
back to quasi-linear elliptic equations, and then present in detail some of
these methods. In particular, we establish that functions in these classes are
locally bounded and locally Holder continuous, and we give conditions for the
regularity to extend up to the boundary. Finally, we prove that non-negative
functions on the DeGiorgi classes satisfy the Harnack inequality. This, on the
one hand, is a surprising fact, since these classes require only some sort of
Caccioppoli-type energy bounds. On the other hand, this raises the question
of understanding their structure, which to date is still not fully understood.
While some facts about these classes are scattered in the literature, this is per-
haps the first systematic presentation of DeGiorgi classes in their own right.
Some of the material is as recent as last year. In this respect, these last two
chapters provide a background on a spectrum of techniques in local behavior
of solutions of elliptic PDEs, and build toward research topics of current active
investigation.

The presentation is more terse and streamlined than in the first edi-
tion. Some elementary background material (Weierstrass Theorem, mollifiers,
Ascoli-Arzelda Theorem, Jensen’s inequality, etc..) has been removed.

I am indebted to many colleagues and students who, over the past fourteen
years, have offered critical suggestions and pointed out misprints, imprecise
statements, and points that were not clear on a first reading. Among these
Giovanni Caruso, Xu Guoyi, Hanna Callender, David Petersen, Mike O’Leary,
Changyong Zhong, Justin Fitzpatrick, Abey Lopez and Haichao Wang. Special
thanks go to Matt Calef for reading carefully a large portion of the manu-
script and providing suggestions and some simplifying arguments. The help
of U. Gianazza has been greatly appreciated. He has read the entire manu-
script with extreme care and dedication, picking up points that needed to be
clarified. I am very much indebted to Ugo.

I would like to thank Avner Friedman, James Serrin, Constantine
Dafermos, Bob Glassey, Giorgio Talenti, Luigi Ambrosio, Juan Manfredi,
John Lewis, Vincenzo Vespri, and Gui Qiang Chen for examining the manu-
script in detail and for providing valuable comments. Special thanks to David
Kinderlehrer for his suggestion to include material on weak formulations and
direct methods. Without his input and critical reading, the last two chapters
probably would not have been written. Finally, I would like to thank Ann
Kostant and the entire team at Birkh&user for their patience in coping with
my delays.

Vanderbilt University Emmanuele DiBenedetto
June 2009



Preface to the First Edition

These notes are meant to be a self contained, elementary introduction to
partial differential equations (PDEs). They assume only advanced differential
calculus and some basic L? theory. Although the basic equations treated in
this book, given its scope, are linear, I have made an attempt to approach
then from a non-linear perspective.

Chapter I is focused on the Cauchy-Kowalewski theorem. We discuss the
notion of characteristic surfaces and use it to classify partial differential equa-
tions. The discussion grows from equations of second-order in two variables to
equations of second-order in N variables to PDEs of any order in N variables.

In Chapters 2 and 3 we study the Laplace equation and connected ellip-
tic theory. The existence of solutions for the Dirichlet problem is proven by
the Perron method. This method clarifies the structure of the sub(super)-
harmonic functions, and it is closely related to the modern notion of wviscosity
solution. The elliptic theory is complemented by the Harnack and Liouville
theorems, the simplest version of Schauder’s estimates, and basic LP-potential
estimates. Then, in Chapter 3 the Dirichlet and Neumann problems, as well
as eigenvalue problems for the Laplacian, are cast in terms of integral equa-
tions. This requires some basic facts concerning double-layer potentials and
the notion of compact subsets of L?, which we present.

In Chapter 4 we present the Fredholm theory of integral equations and
derive necessary and sufficient conditions for solving the Neumann problem.
We solve eigenvalue problems for the Laplacian, generate orthonormal systems
in L%, and discuss questions of completeness of such systems in L?. This
provides a theoretical basis for the method of separation of variables.

Chapter 5 treats the heat equation and related parabolic theory. We intro-
duce the representation formulas, and discuss various comparison principles.
Some focus has been placed on the uniqueness of solutions to the Cauchy
problem and their behavior as || — oco. We discuss Widder’s theorem and
the structure of the non-negative solutions. To prove the parabolic Harnack
estimate we have used an idea introduced by Krylov and Safonov in the con-
text of fully non-linear equations.
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The wave equation is treated in Chapter 6 in its basic aspects. We derive
representation formulas and discuss the role of the characteristics, propaga-
tion of signals, and questions of regularity. For general linear second-order
hyperbolic equations in two variables, we introduce the Riemann function and
prove its symmetry properties. The sections on Goursat problems represent a
concrete application of integral equations of Volterra type.

Chapter 7 is an introduction to conservation laws. The main points of the
theory are taken from the original papers of Hopf and Lax from the 1950s.
Space is given to the minimization process and the meaning of taking the
initial data in the sense of L!. The uniqueness theorem we present is due
to Kruzhkov (1970). We discuss the meaning of wiscosity solution vis-a-vis
the notion of sub-solutions and maximum principle for parabolic equations.
The theory is complemented by an analysis of the asymptotic behavior, again
following Hopf and Lax.

Even though the layout is theoretical, I have indicated some of the physical
origins of PDEs. Reference is made to potential theory, similarity solutions
for the porous medium equation, generalized Riemann problems, etc.

I have also attempted to convey the notion of ill-posed problems, mainly
via some examples of Hadamard.

Most of the background material, arising along the presentation, has been
stated and proved in the complements. Examples include the Ascoli-Arzela
theorem, Jensen’s inequality, the characterization of compactness in L?, molli-
fiers, basic facts on convex functions, and the Weierstrass theorem. A book
of this kind is bound to leave out a number of topics, and this book is no
exception. Perhaps the most noticeable omission here is some treatment of
numerical methods.

These notes have grown out of courses in PDEs I taught over the years
at Indiana University, Northwestern University and the University of Rome
II, Ttaly. My thanks go to the numerous students who have pointed out mis-
prints and imprecise statements. Of these, special thanks go to M. O’Leary,
D. Diller, R. Czech, and A. Grillo. I am indebted to A. Devinatz for reading
a large portion of the manuscript and for providing valuable critical com-
ments. I have also benefited from the critical input of M. Herrero, V. Vesprii,
and J. Manfredi, who have examined parts of the manuscript. I am grate-
ful to E. Giusti for his help with some of the historical notes. The input of
L. Chierchia has been crucial. He has read a large part of the manuscript
and made critical remarks and suggestions. He has also worked out in detail
a large number of the problems and supplied some of his own. In particular,
he wrote the first draft of problems 2.7-2.13 of Chapter 5 and 6.10-6.11 of
Chapter 6. Finally I like to thank M. Cangelli and H. Howard for their help
with the graphics.
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