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PREFACE

This book is a thorough revision of its earlier eighth edition, which was published in
2009. That edition has served, just as the earlier ones did, as a textbook for a one-term
introductory course in the theory and application of functions of a complex variable.
This new edition preserves the basic content and style of the earlier ones, the first two
of which were written by the late Ruel V. Churchill alone.

The book has always had two main objectives.

(a) The first is to develop those parts of the theory that are prominent in applications of
the subject.

(b) The second objective is to furnish an introduction to applications of residues and
conformal mapping. The applications of residues include their use in evaluating
real improper integrals, finding inverse Laplace transforms, and locating zeros of
functions. Considerable attention is paid to the use of conformal mapping in solving
boundary value problems that arise in studies of heat conduction and fluid flow.
Hence the book may be considered as a companion volume to the authors’ text
Fourier Series and Boundary Value Problems, where another classical method for
solving boundary value problems in partial differential equations is developed.

The first nine chapters of this book have for many years formed the basis of a three-
hour course given each term at The University of Michigan. The final three chapters have
fewer changes and are mostly intended for self-study and reference. The classes using
the book have consisted mainly of seniors concentrating in mathematics, engineering,
or one of the physical sciences. Before taking the course, the students have completed at
least a three-term calculus sequence and a first course in ordinary differential equations.
If mapping by elementary functions is desired earlier in the course, one can skip to
Chap. 8 immediately after Chap. 3 on elementary functions and then return to Chap. 4
on integrals.

We mention here a sample of the changes in this edition, some of which were
suggested by students and people teaching from the book. A number of topics have
been moved from where they were. For example, although harmonic functions are still
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introduced in Chap. 2, harmonic conjugates have been moved to Chap. 9, where they
are actually needed. Another example is the moving of the derivation of an important
inequality needed in proving the fundamental theorem of algebra (Chap. 4) to Chap. 1,
where related inequalities are introduced. This has the advantage of enabling the reader
to concentrate on such inequalities when they are grouped together and also of making
the proof of the fundamental theorem of algebra reasonably brief and efficient without
taking the reader on a distracting side-trip. The introduction to the concept of mapping
in Chap. 2 is shortened somewhat in this edition, and only the mapping w = z? is
emphasized in that chapter. This was suggested by some users of the last edition, who
felt that a detailed consideration of w = z? is sufficient in Chap. 2 in order to illustrate
concepts needed there. Finally, since most of the series, both Taylor and Laurent, that are
found and discussed in Chap. 5 rely on the reader’s familiarity with just six Maclaurin
series, those series are now grouped together so that the reader is not forced to hunt
around for them whenever they are needed in finding other series expansions. Also,
Chap. 5 now contains a separate section, following Taylor’s theorem, devoted entirely
to series representations involving negative powers of z — zo. Experience has shown that
this is especially valuable in making the transformation from Taylor to Laurent series a
natural one.

This edition contains many new examples, sometimes taken from the exercises
in the last edition. Quite often the examples follow in a separate section immediately
following a section that develops the theory to be illustrated.

The clarity of the presentation has been enhanced in other ways. Boldface letters
have been used to make definitions more easily identified. The book has fifteen new
figures, as well as a number of existing ones that have been improved. Finally, when
the proofs of theorems are unusually long, those proofs are clearly divided into parts.
This happens, for instance, in the proof (Sec. 49) of the three-part theorem regarding
the existence and use of antiderivatives. The same is true of the proof (Sec. 51) of
the Cauchy-Goursat theorem. Finally, there is a Student’s Solutions Manual (ISBN:
978-0-07-352899-1; MHID: 0-07-352899-4) that is available. It contains solutions of
selected exercises in Chapters 1 through 7, covering the material through residues.

In order to accommodate as wide a range of readers as possible, there are footnotes
referring to other texts that give proofs and discussions of the more delicate results
from calculus and advanced calculus that are occasionally needed. A bibliography of
other books on complex variables, many of which are more advanced, is provided in
Appendix 1. A table of conformal transformations that are useful in applications appears
in Appendix 2.

As already indicated, some of the changes in this edition have been suggested by
users of the earlier edition. Moreover, in the preparation of this new edition, continual
interest and support has been provided by a variety of other people, especially the staff
at McGraw-Hill and my wife Jacqueline Read Brown.

James Ward Brown
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CHAPTER

1

COMPLEX NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex number
system. We assume various corresponding properties of real numbers to be known.

1. SUMS AND PRODUCTS

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and y,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x, 0) on the real axis, we write x = (x, 0); and it is clear that
the set of complex numbers includes the real numbers as a subset. Complex numbers
of the form (0, y) correspond to points on the y axis and are called pure imaginary
numbers when y # 0. The y axis is then referred to as the imaginary axis.
It is customary to denote a complex number (x, y) by z, so that (see Fig. 1)

(1) z=(x,y).
y
ez=(x,y)
+i=(0,1)
0 x=(x0) X FIGURE1
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The real numbers x and y are, moreover, known as the real and imaginary parts of z,
respectively, and we write

) x =Rez, y =Imz.

Two complex numbers z; and z, are equal whenever they have the same real parts and
the same imaginary parts. Thus the statement z; = z, means that z; and z, correspond
to the same point in the complex, or z, plane.

The sum z{ + z, and product z;z, of two complex numbers

z1=(x1,y1) and 2z = (x5, y1)
are defined as follows:
(3) (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),
4 (x1, y1)(x2, y2) = (x1x2 — Y12, Y1X2 + X12).

Note that the operations defined by means of equations (3) and (4) become the usual
operations of addition and multiplication when restricted to the real numbers:

(x1,0) + (x2,0) = (x1 + x2,0),
(x1,0)(x2, 0) = (x1x2, 0).

The complex number system is, therefore, a natural extension of the real number
system.

Any complex number z = (x, y) can be written z = (x, 0) + (0, y), and it is easy
to see that (0, 1)(y, 0) = (0, y). Hence

z2=(x, O) + (Os 1)()’, 0);

and if we think of a real number as either x or (x, 0) and let i denote the pure imaginary
number (0,1), as shown in Fig. 1, it is clear that*

(5 7 =x+1iy.
Also, with the convention that z2 = zz, z> = 7%z, etc., we have
i*=(0,1)(0,1) = (-1,0),

or
(6) i’=-1
Because (x, y) = x + iy, definitions (3) and (4) become
(M (x1 +iy) + (2 +iy2) = (01 +x2) +i(n1 + y2),
® (a1 +iy1) (2 + iy2) = (x1x2 — y192) + i(y1x2 + x1¥2)-

*In electrical engineering, the letter j is used instead of i.
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Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by replacing
i2 by —1 when it occurs. Also, observe how equation (8) tells us that any complex
number times zero is zero. More precisely,

z2:0=(x+1iy)0+i0)=04+i0=0

forany z = x +iy.

2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same as
for real numbers. We list here the more basic of these algebraic properties and verify
some of them. Most of the others are verified in the exercises.

The commutative laws

(1) t+z=2+2, 2122 =222
and the associative laws
(2) (@1 +z)+u=u+(2+z), (2122)73 = 21(2223)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers have corresponding properties. The same is
true of the distributive law

3) 2(z1 + 22) = 221 + 222.

EXAMPLE. If

z71= 1, y1) and z3 = (x2, y2),

then

Z1+z2 = (x1 +x2, 1 + y2) = (x2 +x1, Y2 + y1) = 22 + 21.

According to the commutative law for multiplication, iy = yi. Hence one can
write z = x + yi instead of z = x + iy. Also, because of the associative laws, a sum
21 + 22+ z3 or a product z;z,z3 is well defined without parentheses, as is the case with
real numbers.

The additive identity O = (0, 0) and the multiplicative identity 1 = (1, 0) for real
numbers carry over to the entire complex number system. That is,

) z+0=z and z:-1=z
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for every complex number z. Furthermore, 0 and 1 are the only complex numbers with
such properties (see Exercise 8).
There is associated with each complex number z = (x, y) an additive inverse

(&) =z = (—x, —y),

satisfying the equation z 4+ (—z) = 0. Moreover, there is only one additive inverse for
any given z, since the equation

(x,y)+ (u,v) =(0,0)
implies that
u=—x and v=-—y.

For any nonzero complex number z = (x, y), there is a number z~! such that
zz~! = 1. This multiplicative inverse is less obvious than the additive one. To find it,
we seek real numbers u and v, expressed in terms of x and y, such that

(x, y)(u, v) = (1, 0).

According to equation (4), Sec. 1, which defines the product of two complex numbers,
u and v must satisfy the pair

xu—yv=1, yu+xv=0
of linear simultaneous equations; and simple computation yields the unique solution

X " -y
U= ===, = —
x% 4 y? X% 2

So the multiplicative inverse of z = (x, y) is

©) = (x2 i =t x2_+yy2> (z#0).

The inverse z~! is not defined when z = 0. In fact, z = 0 means that x> + y?> = 0; and
this is not permitted in expression (6).

EXERCISES
1. Verify that
(@) W2—i)—i(l —+2i)=-2i;
() 2,-3)(=2,1) =(-1,8);

11
() 3,1, —1)(5, E) =(2,1).
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11.

3.

Show that

(a) Re(iz) = —Img;

(b) Im(iz) =Rez.

Show that (1 +2)* =1+ 2z + z°.

Verify that each of the two numbers z = 1 % i satisfies the equation z2 — 2z 4+ 2 = 0.

Prove that multiplication of complex numbers is commutative, as stated at the beginning
of Sec. 2.

Verify

(a) the associative law for addition of complex numbers, stated at the beginning of
Sec. 2;

(b) the distributive law (3), Sec. 2.

. Use the associative law for addition and the distributive law to show that

z(z1 + 22 + z3) = 221 + 222 + 223.

. (a) Write (x, y)+ (4, v) = (x, y) and point out how it follows that the complex number

0 = (0, 0) is unique as an additive identity.
(b) Likewise, write (x, y)(#,v) = (x,y) and show that the number 1 = (1,0) is a
unique multiplicative identity.

. Use —1 = (—1,0) and z = (x, y) to show that (—1)z = —z.
10.

Usei = (0, 1) and y = (y, 0) to verify that —(iy) = (—i)y. Thus show that the additive
inverse of acomplex number z = x +iy can be written —z = —x —iy without ambiguity.

Solve the equation z2 + z + 1 = 0 for z = (x, y) by writing
(x, Y)(x, y) + (x, y) + (1,0) = (0, 0)

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to show
that y # 0.

1 /3
Ans.z2=| —=,&+— |.
ns. z (2&:2)

FURTHER ALGEBRAIC PROPERTIES

In this section, we mention a number of other algebraic properties of addition and

multiplication of complex numbers that follow from the ones already described in

Sec. 2. Inasmuch as such properties continue to be anticipated because they also apply
to real numbers, the reader can easily pass to Sec. 4 without serious disruption.

‘We begin with the observation that the existence of multiplicative inverses enables

us to show that if a product z1z, is zero, then so is at least one of the factors z; and
2. For suppose that z;z; = 0 and z; # 0. The inverse zl‘1 exists; and any complex

number times zero is zero (Sec. 1). Hence

n=2-1=2(uz') = ('2)e =27 @122) =27 - 0=0.
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That is, if z1z, = 0, either z; = 0 or z; = 0; or possibly both of the numbers z; and
7 are zero. Another way to state this result is that if two complex numbers zy and z,
are nonzero, then so is their product 7,2;.

Subtraction and division are defined in terms of additive and multiplicative
inverses:

(1) 21 — 22 = 21+ (—22),
2 ot @A
2

Thus, in view of expressions (5) and (6) in Sec. 2,

(3) z1 — 22 = (x1, y1) + (—x2, =y2) = (x1 — x2, y1 — y2)
and
@ a _ (xl’yl)( 2x2 . 2—}’2 2) _ (xlxi-l-)hz}’z, }’ng_x;)"Z>
22 X +y; X+ X+ X+ ¥
(z2 # 0)

when z; = (x1, y1) and z; = (x2, y2).
Using z; = x; + iy; and 2z = x3 + iy, one can write expressions (3) and (4)
here as

®)) Zi—22=@ —x2)+i(y1 —y)

and
Z1 X1 X2+ Y1y Vix2—X1)2

(6) — = (z2 #0).
2 X3+ X3+ y3

Although expression (6) is not easy to remember, it can be obtained by writing (see
Exercise 7)

21 _ iy (2 —iya)

22 (2 +iy)(xa —iy2)’

(7

multiplying out the products in the numerator and denominator on the right, and then
using the property
2 4+2 - _ 1 _ U 2z
® T2 -@+wn'=untag'=2+2  (@#£0).
23 23 23

The motivation for starting with equation (7) appears in Sec. 5.

EXAMPLE. The method is illustrated below:
441 B @4 +i)@2+30) _5+l4i_ 5 14

% -3+ 1B _BTB"




