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INTRODUCTION

Go outside and play in the sun. It’s good for you.

My mother

The use of sunlight and drugs for the treatment of skin diseases has been docu-
mented for over 3400 years; for an even longer time, the reddening, blistering, and
tanning effects of sunlight have probably been known. With the discovery of lasers a
new dimension was added in the study and application of light in medical therapy.
Ophthalmologists adopted the laser in the clinic as a photocoagulator for the treatment
of detached retina, and the use of laser as a scalpel for noncontact, noninvasive, and
even subcellular surgery is at an earlier state of acceptance. In addition to surgical uses,
new, promising ideas are continuing to emerge. Thus, laser can be used to diagnose
and treat malignant tumors using photoradiation therapy. This renewed interest, stim-
ulated by the mutual interplay of both scientific and technological innovations, is char-
acterized by a multidisciplinary approach involving physicists, chemists, biochemists,
and physicians.

Our objective has been to collect in these three volumes the most up-to-date assess-
ment of our understanding of light in medicine. Since Photomedicine was defined as
an informative guide to practical applications rather than an esoteric study of medical
discipline, the level of medical rigor was reasonably relaxed.

Given limitations on length, the chapters are not intended to be all embracing re-
views of the field, but rather to present an overview of key ideas and directions with
the objective of delineating the most promising and exciting problems. We hope that
the text is sufficiently introductory to stimulate the curiosity and interest of a neophyte,
and to simultaneously provide the specialist with a rather short, but current summary
of the status of this field. Most important, we hope that the volumes will further high-
light this rapidly developing science and spur current and new researchers and ideas.

Ehud Ben-Hur
Ionel Rosenthal
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2 Photomedicine
I. INTRODUCTION

Photodynamic inactivation of biological systems by exposure to certain dyes and
visible light has been studied since the beginning of this century.' Oxygen is required
for these photochemical reactions, which proceed either by direct interaction of the
electronically excited dye molecule with a cellular target, followed by reaction of the
transients formed with molecular oxygen (type I), or via interaction of the dye in its
excited triplet state with oxygen and generation of active oxygen species (type I1).?
Clinical application of this process was prompted by the observation that malignant
tumors can retain porphyrin derivatives for longer time than adjacent normal tissues.
Subsequent exposure to light of proper wavelength can cause eradication of the tumor.
This modality, termed photodynamic therapy, uses primarily hematoporphyrin deriv-
ative (HPD) as photosensitizer.® Although the main absorbtion band of HPD is around
400 nm, for therapy the dye is usually activated by red light (A = 630 nm) where only a
minor absorption peak exists, because of the increased transparency of tissues in the
red.

HPD is a complex mixture of porphyrins of a somewhat variable composition de-
rived from hematoporphyrin by treatment with a mixture of sulfuric acid and acetic
acid (1:19).*5 This chemical reaction leads to formation of a large number of deriva-
tives, dependent on the reaction conditions, which have been partially characterized as
the dimethyl esters, dicarboxylic acids, and dehydro derivatives. The uncertainty of the
active constituents in HPD and its chemical lability, may create difficulties in ensuring
reproducibility in its use.

The potential advantage of phototherapy, of total and exclusive eradication of tu-
mors without damage to surrounding tissues even in inoperable cases such as blockage
of airways, justifies the search for alternative sensitizers. Ideally such a compound
should (1) show a preferential retention/affinity for malignant tumors, (2) possess a
very low toxicity, and (3) exhibit an efficient photodynamic effect activated by light of
wavelength longer than 600 nm.

Metallophthalocyanines are porphyrin-like compounds (Figure 1) that absorb
strongly in the red (the Q band, 600 to 700 nm, £ ™ 10°f/mol/cm). These dyes have
important technological applications as catalysts, dyes, and pigments. There has also
been a considerable interest in the photophysical properties of phthalocyanines since
the first description of their photoconduction and semiconductor properties,® and their
use as laser dyes.” The mechanistic photochemistry of several phthalocyanines has been
investigated in recent years.®'?

The phthalocyanines can be easily synthesized and purified, and exhibit a very unu-
sual chemical stability. Phthalocyanine derivatives are reported to be nontoxic. Thus,
salts of copper phthalocyanine sulfonic acid are practically nontoxic to various species,
from protozoa to dogs, in doses up to 100 mg/kg. Furthermore, this latter dye was
reported to be retained preferentially in experimentally produced intracranial neo-
plasms in mice.!# Similarly, uranyl tetrasulfonate phthalocyanine was shown to accu-
mulate in brain tumors,'® and (°°Tc) tetrasulfophthalocyanine concentrated to some
extent in mammary adenocarcinoma in rats.!® These observations make phthalocy-
anine derivates most promising photosensitizers for use in photodynamic therapy.'’
However, in spite of their structural resemblance to the biologically important por-
phyrins, the photobiology of phthalocyanines barely has been studied.

This chapter describes the photobiological activity of phthalocyanines in vitro and
in vivo and indicates the potential for photodynamic therapy.
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FIGURE 1. The molecular structure of metallophthalocyanine.

II. PHOTOBIOLOGY OF PHTHALOCYANINES IN VITRO

A. Photosensitized Killing of Cultured Cells

The initial observation that phthalocyanines can inactivate cultured mammalian cells
following exposure to visible light was performed on Chinese hamster fibroblasts.'” It
was very early recognized that the metal atom complexed with the phthalocyanine ring
was crucial for photobiological activity.'® The screening assay of 11 different phthalo-
cyanines indicated that aluminum phthalocyanine (AIPC) was most photobiologically
active, followed by zinc derivative which was only one fifth as active under similar
experimental conditions. Therefore, most of the experimental data were collected em-
ploying either AIPC or its water-soluble derivative containing sulfonic acid groups
(AIPCS). Thus, exposure of Chinese hamster cells to white fluorescent light following
an overnight incubation with AIPC causes exponential cell killing which is preceded by
a pronounced shoulder (Figure 2). The shoulder on the survival curve was reduced,
and the final slope became steeper when the concentration of AIPC in the growth
medium prior to light exposure was increased. The cells became progressively more
sensitive to light as a function of incubation time with the dye, reaching a maximum at
about 3 hr for AIPC (Figure 3). The loss of sensitivity of the cells containing the dye,
upon incubation in dye-free medium, is more rapid. This loss did not occur when
incubation was carried out in medium or buffer devoid of blood serum. This is most
probably due to the very low solubility of AIPC in water. In the growth medium, AIPC
tightly binds to serum proteins,'® which serve as a vehicle for its transport into and out
of the cell.

The kinetics of photosensitization by AIPCS are much slower than those of AIPC,
and saturation does not take place even after overnight incubation. The reverse proc-
ess, loss of photosensitivity, is also slower with AIPCS as compared to AIPC.

The concentration dependence of photosensitivity (expressed as 1/F,,, the reciprocal
of the fluence required to reduce survival to 10%) induced by the two aluminum
phthalocyanines is shown in Figure 4. While the response to both derivatives is linear
over a wide range of concentrations, the slope of the AIPC curve is steeper and dis-
placed upward, indicating a higher potency for the same concentration. While some of
this difference is due to the fact that after 16-hr incubation, the effect of AIPCS has
not yet reached a maximum (Figure 3), other factors might play a role. For example,
their different solubilities could lead to AIPCS localization at intrinsically less-sensitive
subcellular targets. The possibility that the two phthalocyanines have different photo-
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FIGURE 2. Survival of Chinese hamster cells exposed for 16 hrto 0.4 or 1 uM
AIPC, as indicated, follwed by light exposure. Squares denote exposure to light
in PBS containing 1 M glycerol, triangles are for PBS in D,0O, and circles are for
PBS in H,O.

reactivities is less likely since the photophysics of phthalocyanines is not expected to be
affected by the substitution with sulfonic acid residues on the benzene rings.

B. Factors Affecting Photosensitization by Phthalocyanines

Cell physiology is an important factor that can determine the sensitivity of the cell
to cytotoxic agents. The position of the cell in the cell cycle is crucial in this respect,
and the response to UV and ionizing radiation displays a pronounced age structure (see
Chapter 2). Thus, Chinese hamster cells are most sensitive to X-irradiation at the G,/
S border and are most resistant in late S phase. Conversely, the photosensitization by
AIPC is equally efficient throughout the cell cycle, and the age-response function is
virtually flat (Figure 5).

The external interference with the cellular processes operating, postphotoexcitation,
to repair the photodamage, could result in enhanced sensitivity. In preliminary exper-
iments, the production of DNA strand breakage was observed using the sensitive alkali
elution technique. The yield of these breaks was about half of that produced by X-
irradiation, at equisurvival doses. Such DNA breaks stimulate the synthesis of
poly(ADP-ribose), which is involved in their repair. Inhibition of poly(ADP-ribose)
polymerase, e.g., by 3-aminobenzamide (3-ABA), following exposure to ionizing ra-
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FIGURE 3. Kinetics of photosensitizaiton by phthalocyanines.
Solid circles denote the development of photosensitivity as a func-
tion of time in the presence of 1.5 uM AIPCS followed by exposure
to 108 kJ/m?. The slashed curve is for 0.4 uM AIPC followed by
8 kJ/m?. Open circles show the disappearance of photosensitivity
when cells incubated for 16 hr with 1.5 uM AIPCS are rinsed and
exposed to 108 kJ/m? after various incubation times in dye-free
growth medium. The dotted curve is for 0.4 uM AIPC and 6 kJ/
mz

diation, enhances cell killing.?° In contrast, 3-ABA had no effect after exposure to
AIPC and light (Figure 6).2* This is consistent with the observation that the level of
NAD*, the precursor of poly(ADP-ribose) synthesis, is not depleted after photosensi-
tization by AIPC. Presumably, the DNA damage produced is expressed as strand
breaks only in the alkali conditions of the assay.

A more generalized treatment that inhibits repair processes operating on radiation
damage is exposure to D,O. Postirradiation incubation in D,O medium enhances ra-
diation response?? and a similar effect occurs after AIPC photosensitization (Figure 6).
It should be pointed out that the presence of D,O during light exposure only, has no
effect on the cell killing (Figure 2, see Section II.D for discussion). However, since in
principle cells could repair sublethal damage during exposure that lasts for more than
1 hr at lower light fluence rate (see Chapter 2), the presence of D,O under such condi-
tions could increase the bioresponse by inhibiting repair processes.

C. Action Spectrum

Determination of action spectrum, i.e., the relative efficiency of various wavelengths
in causing a specific bioeffect, is of fundamental importance in photobiology since it
identifies the chromophore responsible for light absorption. In phototherapy, action
spectrum indicates the optimal wavelength to be used for treatment. A dye laser
pumped by a copper-vapor laser was employed for obtaining the action spectrum. The
absorption spectrum of AIPC, in ethanolic solution, in aqueous solution after com-
plexation with bovine serum albumin (BSA), or with yeast RNA, and the action spec-
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FIGURE 4. The dependence of Chinese hamster cell photosensitiv-
ity on phthalocyanine concentration. Cells were incubated for 16 hr
with AIPC (®) or AIPCS (O) and the reciprocal of the fluence required
to reduce survival to 10% (1/F,,) was plotted as a function of dye
concentration.

trum are shown in Figure 7. It is evident that the absorption spectrum of AIPC is
drastically modified after complexation with biological macromolecules. The binding
constant is so high that the complex is not dissociated when run through a molecular
sieve column of Sephadex G-25.'° It is noteworthy that the action spectrum for Chinese
hamster cell killing follows none of the absorption spectra of the complexes of AIPC.
This would tend to rule out proteins and RNA as the cellular targets for AIPC action
in the cell. Since no dye binding to DNA could be observed, and because of the dye
hydrophobicity, a most likely target is the lipid constituents of cellular membranes.

Unlike white fluorescent light, survival curves resulting from laser exposure were
essentially exponential. The fluence required to kill 90% of the cells was approximately
tenfold lower using 680-nm laser light than a fluorescent lamp. While the average flu-
ence rate was similar in both cases, the laser in contradistinction to fluorescent light
consisted of 4000 pulses per second. Thus, the actual power density during the pulse
was much higher than during exposure to fluorescent light and could drastically modify
the photophysics of the sensitizer. This could be the reason for the disappearance of
the shoulder from the survival curve. At any rate, the action spectrum suggests that
wavelengths about 680 nm should be employed for maximum photoefficiency in sen-
sitization reaction with AIPC.

D. Mechanism of Photosensitizing Inactivation
The first question that arises concerning the mechanism of phthalocyanine photosen-
sitization is the involvement of molecular oxygen. Figure 8 shows that oxygen is defin-



